1) (16 points) Let the reduced echelon form of a matrix $A = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 2 & 0 & 0 \\
2 & -3 & 0 & 0
\end{bmatrix}$

a) Is A invertible? Explain.
b) Do the columns of A form a basis for \mathbb{R}^4? Explain.
c) Find bases and dimensions of $\text{Nul}(A)$ and $\text{Row}(A)$.
d) Is $\lambda = 0$ an eigenvalue of A? Explain.

2) (14 points) Let $L : \mathbb{R}^m \to \mathbb{R}^n$ be a linear map.
a) What’s the size of the standard matrix A of L?
b) Find the relationship between m and n if
i) L is one-to-one but not onto; ii) L is onto but not one-to-one; iii) L is one-to-one and onto. Explain.

3) (15 points) Let A be an 4×4 matrix with $\det A = 4$ and diagonalizable, i.e., $A = PDP^{-1}$.
a) Compute $\det(2A^2A^T)$ and $\det D^3$.
b) Can A have an eigenvalue of multiplicity two and the corresponding eigenspace of dimension one? Explain.

4) (20 points) Let $A = \begin{bmatrix}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 1
\end{bmatrix}$.
a) Find the eigenvalues of A and the corresponding eigenvectors.
b) Find the orthogonal diagonalization of A.

5) (20 points) Let $V = \text{span} \{ (1, 1, 1, 1)^T, (1, 0, 1, 1)^T, (0, 0, 1, 2)^T \}$.
a) Show that the dim $V = 3$.
b) Use Gram-Schmidt to find an orthonormal basis for V.
c) Find a QR factorization for A.

6) (15 points) a) Find the quadratic form whose standard matrix is A in problem 4).
b) Is Q positive definite? negative definite? or indefinite? Explain.
c) Find the change of variable that eliminates the mixed product terms from Q.

1