Problem 1. Consider the linear system

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \gamma \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix},$$

where α , β and γ are scalar constants.

- (a) Find a basis for the left nullspace of the matrix on the left hand side of this system.
- (b) Find necessary and sufficient conditions on α, β, γ for this system to have a solution.
- (c) Find the general solution of the system.

Problem 2. In this problem, N is a positive integer; I is the $N \times N$ identity matrix; A, B and C are real $N \times N$ matrices; and \hat{v} is a real N component vector of unit length.

- (a) Show $A = I 2\hat{v}\hat{v}^t$ satisfies $A^tA = I$ and $A^2 = I$.
- (b) What are the eigenvalues of A?
- (c) Suppose $B^tB = I$. What are the possible eigenvalues of B? That is, how does the condition $B^tB = I$ constrain the eigenvalues of B?
- (d) Suppose $C^2 = I$. What are the possible eigenvalues of C? That is, how does the condition $C^2 = I$ constrain the eigenvalues of C?
- (e) Suppose $(I+D)^2=I$ and all the eigenvalues of D have magnitude less than two. Show D=0.

Problem 3. Show that for large integer values of N

$$\begin{bmatrix} 1 & \frac{2\pi}{N} \\ -\frac{2\pi}{N} & 1 \end{bmatrix}^N = \left(1 + \frac{2\pi^2}{N}\right) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + O(N^{-2}).$$

You may find the Taylor series for e^z and $\ln(1+z)$ helpful:

$$e^{z} = \sum_{n=0}^{\infty} \frac{1}{n!} z^{n} = 1 + z + \frac{1}{2} z^{2} + \dots$$

$$\ln(1+z) = \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} z^{n} = z - \frac{1}{2} z^{2} + \frac{1}{3} z^{3} + \dots$$

Problem 4. Consider the IVP

$$u'(t) = 0, \quad t \in [0, T], \quad u(0) = U_I.$$

The solution to this problem is $u(t) = U_I$. The two step scheme

$$u_{n+2} - 4u_{n+1} + 3u_n = -2hf_n$$

for this equation is consistent with order p.

1. Find p.

3. Determine if the scheme is convergent.

Problem 5. An iterative scheme producing sequences $\{x^m\}$ of approximations to x^* converges superlinearly if there exists a sequence $\{C_m\}$ of nonnegative constants such that $C_m \to 0$ and

$$\left| x^* - x^{(m+1)} \right| \le C_m \left| x^* - x^m \right|.$$

1. **Prove the following:** Suppose that the iteration function Φ has a fixed point x^* and that Φ is a contraction on some neighborhood $(x^* - \delta, x^* + \delta)$ of x^* , where $\delta > 0$. Let $x^{(0)}$ be any initial guess lying in $(x^* - \delta, x^* + \delta)$, and let $\{x^{(m)}\}$ be the sequence of iterates generated by the successive substitution into the scheme

$$x^{(m+1)} \leftarrow \Phi\left(x^{(m)}\right)$$
.

Then each $x^{(m)} \in (x^* - \delta, x^* + \delta)$, and $x^{(m)} \to x^*$ as $m \to \infty$.

- 2. Show that a sequence $\{p_n\}$ that converges to p with order $\alpha > 1$ converges superlinearly to p.
- 3. Show that $p_n = \frac{1}{n^n}$ converges superlinearly to zero but is not convergent of order α for $\alpha > 1$.

Problem 6. Consider the nonlinear equation f(x) = 0.

- 1. State an algorithm that approximates the root of the equation using the Bisection method.
- 2. Derive the rate and order of convergence of the Bisection method.
- 3. State an algorithm that approximates the root of the equation using Newton's method.
- 4. Derive the rate and order of convergence of Newton's method.
- 5. Discuss the convergence for $f(x) = \sqrt[3]{x} = 0$.