Ph.D Qualifying Exam in Linear Algebra and Numerical Methods

January 18, 2002. 2:00-5:00pm.

Problem 1. Let \mathbf{R}^3 be euclidean 3-space with the standard inner product $\langle \cdot, \cdot \rangle$ and orthonormal basis $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$. Let $T: \mathbf{R}^3 \to \mathbf{R}^3$ be the linear transformation defined by $T(\mathbf{e}_1) = (1, 1, -2), T(\mathbf{e}_2) = (1, 1, 1), T(\mathbf{e}_3) = (-1, -1, 2)$.

- (a) Compute the kernel (null space) and image (range) of T and conclude that T has no inverse.
- (b) Find an orthonormal basis for K^{\perp} , the orthogonal complement of the kernel K, and show that T restricted to K^{\perp} is invertible.

Problem 2. Let \mathbb{C}^n be complex *n*-space with the usual (complex) inner product. Define U(n) to be the space of complex $n \times n$ matrices A such that $A^*A = AA^* = I$, where A^* is the conjugate transpose of A. Matrices in U(n) are said to be unitary matrices. A matrix A is skew-Hermitian if $A + A^* = 0$, and the space of skew-Hermitian matrices is often denoted by u(n).

- (a) Prove that $A \in u(n) \Longrightarrow e^A \in U(n)$.
- (b) Show that $B \in U(n) \Longrightarrow$ there exists $A \in u(n)$ such that $e^A = B$.

Problem 3. If A is a real $n \times n$ matrix such that all eigenvalues of A^tA are positive, where A^t is the transpose of A, and ||A|| is the standard matrix norm defined as $||A|| = \max\{||A\mathbf{x}|| : ||\mathbf{x}|| = 1\}$, where $||\mathbf{x}||$ is the standard euclidean norm of $\mathbf{x} \in \mathbf{R}^n$, show using variational techniques or other means that

$$\sqrt{\mu_m} \le ||A|| \le \sqrt{\mu_M},$$

where μ_m and μ_M are, respectively, the minimum and maximum eigenvalues of A^tA . (Hint: A^tA is real-symmetric)

Problem 4.

(a) Find constants γ_0 and γ_1 such that the scheme

$$\frac{\gamma_0 f(x) + \gamma_1 f(x+h)}{h} \tag{*}$$

is an approximation of f'(x) of highest possible order. What is the order?

(b) Find constants α_0 , α_1 and α_2 such that the scheme

$$\frac{\alpha_0 f(x) + \alpha_1 f(x+h) + \alpha_2 f(x+2h)}{h} \tag{**}$$

is an approximation of f'(x) of highest possible order. What is the order?

(c) Apply (*) and (**) to approximating f'(0) = 0 where $f(x) = x^{4/3}$. What is the order of the error in each case? Explain any apparent discrepancies with earlier results.

Problem 5. A certain first-order method (first-order local truncation error) for autonomous ODE's $(\dot{x} = f(x))$ has the form

$$x_{n+1} = \alpha x_n + \beta x_{n-1} + \gamma h f(x_{n-1})$$

where α , β and γ are constants and h > 0 is the time step.

- (a) Find formulas for β and γ in terms of α .
- (b) Find a necessary and sufficient condition on α for the method to be stable.

Problem 6. Suppose $F: \mathbf{R} \to \mathbf{R}$ is a smooth bijection with a positive derivative. There exists a smooth inverse function G(x) satisfying

$$F(G(x)) = G(F(x)) = x \quad \forall x \in \mathbf{R}.$$

Moreover, G satisfies the autonomous differential equation

$$\frac{dG}{dx}(x) = \frac{1}{F'(G(x))}. (*)$$

If G(0), the unique root of F, is known then G is fully determined by (*) and this initial datum. Suppose it is desired to estimate G(h) in terms of G(0) under the assumption that F and F' are known and easily computable. A simple method is to apply a step of Euler's method to (*). This method gives the following approximation for G(h):

$$A = G(0) + \frac{h}{F'(G(0))}.$$

A plausible method for improving this approximation is to use A as an initial guess for a step of Newton's method applied to $\phi(x) = F(x) - h$. Note that G(h) is the unique root of $\phi(x)$. Call the approximation of G(h) obtained from this Newton step B.

- (a) Find a formula for B in terms of A, F, F' and h.
- (b) Show that $A = G(h) \epsilon$ where $\epsilon = \frac{1}{2}h^2G''(0) + \frac{1}{6}h^3G'''(\xi)$ and $\xi \in [0, h]$.
- (c) Show that $B G(h) = O(h^4)$. Of what order would the error be if the Newton step followed a step of Heun's method¹ (rather than a step of Euler's method)? Of what order would the error be if two Newton steps followed a step of Euler's method? Of what order would the error be if three Newton steps followed a step of Heun's method?

Heun's method for x' = f(x) is $x_{n+1} = x_n + \frac{h}{2}f(x_n) + \frac{h}{2}f(x_n + hf(x_n))$.