Problem 1. Consider the matrix

$$A = \left(\begin{array}{rrrr} 1 & 2 & -1 & 0 \\ 0 & 4 & -6 & -1 \\ 2 & 0 & 4 & 1 \end{array}\right).$$

- (a) Determine the range, null space, rank and nullity of A.
- (b) Show that the nullity of A can be reduced by making an arbitrarily small change in one of the entries of the matrix. Can the nullity be reduced to zero?

Problem 2. Let

$$B = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ and } C = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}.$$

- (a) Find the minimum and maximum eigenvalues of B by solving optimization (variational) problems.
- (b) Compute the standard euclidean norm ||C|| by solving an optimization (variational) problem.

Problem 3. Let the eigenvalues of M, a real $n \times n$ matrix, all be negative real numbers. Explain why every solution $\mathbf{x} = \mathbf{x}(t)$ of the differential equation

$$\dot{\mathbf{x}} = \frac{d\mathbf{x}}{dt} = M\mathbf{x}$$

satisfies $\mathbf{x}(t) \to 0$ as $t \to \infty$.

Problem 4. Consider the set of points $\{(-1,0),(0,1),(1,0)\}$.

- (a) Find the line best fitting the data in the "least-squares" sense.
- (b) Find the quadratic polynomial interpolating these points.
- (c) Find the natural cubic spline interpolating these points.

Problem 5. Consider the finite-difference approximation

$$f''(x) \approx \frac{f(x + \Delta x) - 2f(x) + f(x - \Delta x)}{\Delta x^2}.$$

- (a) Find the first nonzero term in a Taylor series expansion for the error. This term will have the form $C\Delta x^d$ where C and d are to be determined.
- (b) Use Richardson extrapolation and the result of (a) to find a fourth-order finite-difference approximation for f''(x).

Problem 6. Suppose that $F: \mathbf{R} \to \mathbf{R}$ is a smooth bijection with a positive derivative. There exists a smooth inverse function G(x) satisfying

$$F(G(x)) = G(F(x)) = x \quad \forall x \in \mathbf{R}.$$

Moreover, G satisfies the autonomous differential equation

$$\frac{dG}{dx}(x) = \frac{1}{F'(G(x))}. (1)$$

If G(0), the unique root of F, is known then G is fully determined by (1) and this initial datum. Suppose that it is desired to estimate G(x) at N equally spaced points on the interval [0,1]. A simple method to make this estimate is to solve (1) using Euler's method. That is, $G_0 = G(0)$ and

$$G_{n+1} = G_n + \frac{h}{F'(G_n)} \quad (n = 0, 1, ..., N - 1)$$
 (2)

where h = 1/N.

A natural approach to improve Euler's method is to use an iteration of Newton's method after each Euler step. This improved method is given by $G_0 = G(0)$ and

$$\gamma_{n+1} = G_n + \frac{h}{F'(G_n)} \tag{3}$$

$$G_{n+1} = G_n - \frac{F(\gamma_{n+1}) - (n+1)h}{F'(\gamma_{n+1})}$$
(4)

for n = 0, 1, ..., N - 1.

- (a) Determine p such that $G(1) G_N = O(h^p)$ where G_N is computed using (2). Explain the basis for your determination.
- (b) Determine q such that $G(1) G_N = O(h^q)$ where G_N is computed using (3) and (4). Explain the basis for your determination.