Doctoral Qualifying Exam: Linear Algebra, Probability Distributions and Statistical Inference

Thursday, January 14, 2007

1. Given the 4×2 matrix:

$$\mathbf{A} = \begin{pmatrix} 5 & 3\\ 3 & 5\\ 5 & 3\\ 3 & 5 \end{pmatrix}$$

Find bases for the four fundamental subspaces. Find the singular value decomposition (SVD) of this matrix and decompose the matrix into the form $\mathbf{A} = \sum_{i=1}^{2} \alpha_i \mathbf{u}_i \mathbf{v}_i^T$, where $\mathbf{u}_1^T = (1, 1, 1, 1), \ \mathbf{u}_2^T = (1, -1, 1, -1), \mathbf{v}_1^T = (1, 1), \ \text{and} \ \mathbf{v}_2^T = (1, -1).$

2. (a) Based on the relations between the columns of the following matrix, find one eigenvalue and one eigenvector of **A**:

$$\mathbf{A} = \left(\begin{array}{rrrr} 0.2 & 0.3 & 0.4 \\ 0.4 & 0.4 & 0.4 \\ 0.4 & 0.3 & 0.2 \end{array}\right).$$

- (b) Note that **A** is also a Markov matrix, find the other eigenvalues of **A**.
- (c) If $\mathbf{u}_o = (0 \quad 10 \quad 0)^T$, find the limit of $\mathbf{A}^k \mathbf{u}_o$ as $k \to \infty$.
- 3. Let **A** be an $n \times n$ non-Hermitian matrix. Show that the eigenvalues of \mathbf{A}^{H} are $\bar{\lambda}_{1}, \bar{\lambda}_{2}, \ldots, \bar{\lambda}_{n}$. If \mathbf{u}_{j} is an eigenvector of **A** belonging to λ_{j} , and if \mathbf{v}_{k} is an eigenvector of \mathbf{A}^{H} belonging to $\bar{\lambda}_{k}$, suppose **A** has distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, show that $(\mathbf{u}_{j}, \mathbf{v}_{k}) = 0$ if $j \neq k$.
- 4. (a) If f is the p.d.f. of a random variable (r.v.) T, where T > 0 w.p. 1; then prove that

$$g(x,y) = \begin{cases} \frac{f(x+y)}{x+y}, & \text{if } x > 0, \ y > 0\\ 0, & \text{elsewhere} \end{cases}$$

is the joint p.d.f. of a random vector (X, Y) on the plane. If the *r*-th moment of T is finite for some r > 0, find EX^r in terms of the moments of T.

- (b) In part (a) above, if $r \ge 2$, find the means and variances of X and Y, and compute the correlation between X and Y in terms of the mean (μ) and variance (σ^2) of T.
- 5. (a) Using the approximation,

$$P(u < U \le u + \Delta u, v < V \le v + \Delta v) \approx h(u, v) \Delta u \Delta v,$$
 for small $\Delta u, \Delta v$

for any random vector (U, V) with a joint p.d.f. h(u, v); provide the heuristic arguments and the corresponding derivation of the joint density of the *order statistics* $(X_{(i)}, X_{(j)})$ with $1 \leq i < j \leq n$ derived from a random sample (X_1, X_2, \dots, X_n) of size n drawn from a p.d.f. f(x).

(b) A set of r.v.s (Y_1, Y_2, \dots, Y_n) are said to be exchangable if their joint distribution is invariant under any permutation of the components Y'_i s. Show that if (Y_1, Y_2, \dots, Y_n) are exchangable and positive, then

$$E\left(\frac{Y_{i_1} + Y_{i_2} + \dots + Y_{i_k}}{Y_1 + Y_2 + \dots + Y_n}\right) = \frac{k}{n}, \quad k = 1, 2, \dots, n$$

for any subset $\{i_1, i_2, \dots, i_k\} \subset \{1, 2, \dots, n\}; \ 1 \le k \le n$.

- 6. We have a random sample of size $n \ge 2$ from a Poisson distribution of a r.v. X with unknown mean $\lambda > 0$. We need to estimate the parameter $\theta := \{P(X = 0)\}^2$.
 - a) Suggest an unbiased estimator of θ and prove its unbiasedness.
 - b) Use your estimator in a) above to construct a uniformly minimum variance unbiased (UMVU) estimator of θ . Is it unique? If so, why?
 - c) What is the large sample distribution of the maximum likelihood estimator of θ ? Construct a corresponding large sample confidence interval for θ .