Doctoral Qualifying Exam: Linear Algebra and Numerical Methods Thursday, January 14, 2007

1. Given the 4×2 matrix:

$$\mathbf{A} = \begin{pmatrix} 5 & 3 \\ 3 & 5 \\ 5 & 3 \\ 3 & 5 \end{pmatrix}.$$

Find bases for the four fundamental subspaces. Find the singular value decomposition (SVD) of this matrix and decompose the matrix into the form $\mathbf{A} = \sum_{i=1}^{2} \alpha_i \mathbf{u}_i \mathbf{v}_i^T$, where $\mathbf{u}_1^T = (1, 1, 1, 1)$, $\mathbf{u}_2^T = (1, -1, 1, -1)$, $\mathbf{v}_1^T = (1, 1)$, and $\mathbf{v}_2^T = (1, -1)$.

2. (a) Based on the relations between the columns of the following matrix, find one eigenvalue and one eigenvector of **A**:

$$\mathbf{A} = \left(\begin{array}{ccc} 0.2 & 0.3 & 0.4 \\ 0.4 & 0.4 & 0.4 \\ 0.4 & 0.3 & 0.2 \end{array} \right).$$

- (b) Note that **A** is also a Markov matrix, find the other eigenvalues of **A**.
- (c) If $\mathbf{u}_o = (0 \quad 10 \quad 0)^T$, find the limit of $\mathbf{A}^k \mathbf{u}_o$ as $k \to \infty$.
- 3. Let **A** be an $n \times n$ non-Hermitian matrix. Show that the eigenvalues of \mathbf{A}^H are $\bar{\lambda}_1, \bar{\lambda}_2, \dots, \bar{\lambda}_n$. If \mathbf{u}_j is an eigenvector of **A** belonging to λ_j , and if \mathbf{v}_k is an eigenvector of \mathbf{A}^H belonging to $\bar{\lambda}_k$, suppose **A** has distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$, show that $(\mathbf{u}_j, \mathbf{v}_k) = 0$ if $j \neq k$.
- 4. (a) For the iteration scheme $x_{n+1} = 1 + x_n \frac{x_n^2}{2}$, find the fixed point(s) and determine its (their) stability.
 - (b) The Chebyshev polynomials T_n are defined by $T_n(x) = \cos(n\cos^{-1}(x))$. Show that T_n can also be written as

$$T_n(x) = \frac{1}{2} \left[\left(x + \sqrt{x^2 - 1} \right)^n + \left(x - \sqrt{x^2 - 1} \right)^n \right].$$

5. (a) Determine the degree of precision of the approximation

$$\int_0^1 f(x)dx \approx \frac{1}{4}f(0) + \frac{3}{4}f\left(\frac{2}{3}\right).$$

(b) Determine the value of the constants a, b and c in the following formula

$$\int_{-1}^{1} f(x)dx \approx af(-1) + bf(0) + cf(1)$$

so that it is exact for all polynomials of as large a degree as possible. What is the degree of precision of this approximation?

(c) Find a polynomial p(x) of degree ≤ 2 that satisfies

$$p(x_0) = y_0, \quad p(x_1) = y_1, \quad p'(x_0) = y'_0$$

Give a formula in the form

$$p(x) = y_0 l_0(x) + y_1 l_1(x) + y_0' l_2(x)$$

6. (a) The following Runge-Kutta method

$$y_{n+1} = y_n + \frac{h}{2} [f(t_n, y_n) + f(t_{n+1}, y_{n+1})]$$

is used to obtain a numerical solution to y' = f(t, y). Show that this numerical scheme is second order accurate.

(b) What is the order of the following multistep method? Is it convergent (assuming that both y and f are sufficiently smooth)?

$$y_{n+3} - y_n = h \left[\frac{3}{8} f(t_{n+3}, y_{n+3}) + \frac{9}{8} f(t_{n+2}, y_{n+2}) + \frac{9}{8} f(t_{n+1}, y_{n+1}) + \frac{3}{8} f(t_n, y_n) \right].$$