Ph.D Qualifying Exam in Applied Mathematics

August 27, 2002

Problem 1.

An inextensible heavy string or cable of mass density p is supported under gravity (g)
between points (—a,0) and (a,0) and has length 2 where [ > a. If the tension in the cable
is o, resolve forces in the horizontal direction to show that Z—” = otan¢ and hence that
o = ogsec ¢, where ¢ is the angle between the tangent to the cable and the horizontal at
any point and oy is the tension at x = 0. Resolve forces in the vertical direction to show
that 53—; = sec? ¢ where 3 = gg and s is arc length. Hence find the equation of the curve (a
‘catenary’) for the cable. What happens to the tension in the cable as | — a.

Very briefly, describe how you would derive an equation governing small-amplitude dis-
turbances on the cable, and what form of equation you would expect to find.

Problem 2.

Consider a linear self-adjoint boundary value problem Lu = f(z) on z € (0, 1) with linear
homogeneous boundary conditions at = 0,1, e.g. u(0) = u(1) = 0. Let A, and u, be the
eigenvalues and eigenfunctions of Lu = A\u, and suppose that A = 0 is not an eigenvalue of
the system.

(a) Show that the solution u has an eigenfunction expansion

u(x) =§%”

where «a,, =< u,, f > and <, > is the inner product.

(b) Use the result of (a), stating any assumptions you need to make, to show that the
Green’s function has eigenfunction expansion

G(x,€) = iloj 7“”(5”1:”(5).

(c) Use the result of (b) to deduce (at least formally) that

oo

0(a = &) = un(x) un(§).

1

Hence show that . o 1
G(x,z)dr = —.
/0 (x,x)dx 21: )

n



Problem 3.
Consider the boundary value problem

u'" = f(x) x€(0,1)
u'(0) + eu(0) =0 (1) =0
where primes denote derivatives with respect to x.
(a) Construct the Green’s function for this problem.
(b) Write the solution to the boundary value problem in terms of the Green’s function.

(c) What happens as € — 07 Does the boundary value problem have a solution? Carefully
explain your answer.

Problem 4.
Consider the heat flow problem

Up = Ugy O<z<l1, t>0,
u(z,0) =0,
w(0,t) =0, w(l,t)+u.(l,t)=1, ¢t>0.

(a) Find the solution using separation of variables.

For what times ¢ is a truncation of this series solution a good approximation?

(b) We can also solve this problem by taking Laplace transforms in time. Find the Laplace
transform U(s) of the problem above, where s is the Laplace transform variable. In-
stead of attempting an inversion, expand for large s and invert term-by-term. This
gives an alternative series representation to that found in part (a). [You may quote

the result that for ¢ > 0 and A real, the Laplace transform of erfc (2%/2) is equal to

For what times ¢ is a truncation of this series solution a good approximation?
Problem 5.
(a) Let G satisfy the boundary value problem
VG = -§(x—%), xx €N (la)

G=0, x€0N (10)



where (2 is a compact region in three-dimensional space with a smooth boundary 0f).
Physically, G represents the temperature produced by a point source at x = x’ with
the boundary of 2 held at a fixed temperature.

Show that G > 0 in {2 and % < 0 on 0F) where % denotes the outward going normal
derivative.

(b) Consider the function H which satisfies the related problem

VH = —6(x—%x), x,xX e (2a)
aa—lz—l-hH:O, x € 0Q (2b)

where h > 0 is a positive constant. Physically, H represents the temperature produced

by a point source at x’. The boundary is now subjected to cooling, and this is modeled
by (2b).

Show that H > G for all x € Q, where G is the solution of (1a-b).

[Hint: Consider the function ® = H — G. What follows if you can prove that H > 0
on 0N2? To prove this argue by contradiction, i.e. assume that H < 0 on all or part of
the boundary and work out what happens. You may find the identity V- (HVH) =
|\VH|? + HV?H useful.]

Problem 6.

(a) Show that the free-space Green’s function for the three-dimensional wave equation, that
is, the solution of

Gtt - CQ(Gxx + ny + Gzz) = (5(1‘ - 51)(5(y - 52)(5(2 - 53)(5(1& — T),

G=G,=0 for t<r,

is

G(xuyazat; 617&276377_) = 47TC27"6(t -7 7"/0),

where 12 = (z — &)% + (y — &)%(z — &)?. Here, c is a positive constant. [Note that the

spherically symmetric Laplace operator can be written as 1.2 (T%(') + ())]

Describe this solution physically.

(b) We want to calculate the form of the disturbance u resulting from a unit source moving
with fixed velocity V' along the positive z-axis. Explain how the problem to be solved
now becomes

Ut — CZ(U‘.Z'.Z' + Uyy + uzz) = 6(1‘ - Vt)(S(y)(S(Z), (U)



and use superposition to show that the solution can be written as

u = 1 /Oo 5[t_7_(1/6)[($—VT)2+y2_|_22]1/2]

= dr.
4mc? J oo [(z —V7T)2+y2? + 22]1/2 g

[Hint: To do this, represent the source on the right hand side of equation (U) as
(@ = VOOW)I(:) = 6)3(=) [ [ sler = Vr)olt = r)ole - €)dadr,
and then use the principle of superposition.]
(c) For the case V' < ¢, change variables using
A=74 (1/c)[(x — VT)? +y* + 22V,

to show that the solution takes the more compact form

1 V2 e
u(z,y,z,t) = . l(m — Vi) + <1 — §> (y° + 22)] )

What does the limit V' — 0 recover?

(d) Use the solution in (c) above to find and characterize the shapes of constant u, in a
frame of reference moving with the source. What happens as V' — ¢—7



