Doctoral Qualifying Exam, Applied Mathematics.
May 19, 1999.

You have three hours for this exam. Show all working in the books provided.

1. A spherical drop of constant density p falls under gravity and passes through moist air,
so that moisture condenses onto the drop surface from its surroundings and the drop grows.
The time rate of change of the drop’s mass due to condensation is proportional to its surface
area, with constant of proportionality . Assume that the drop experiences a drag force
proportional to the product of the drop velocity and its surface area, with constant of pro-
portionality /.

(i) Write down equations that govern the mass m(t) of the drop, its radius r(¢), and its
velocity &(t) = v(t). Here t denotes time and x is the position of the particle measured from
a suitable reference point.

(ii) What are the dimensions of the parameters « and 7

(iii) Show that if condensation begins at time ¢ = 0 with initial drop radius ry, then at

subsequent times r(t) = 2t + ro.

(iv) Use the result above to obtain the velocity of the drop, and deduce that at large times
the velocity is given by v(t) ~ —(gt)/(3(3/a) + 4).

(v) The last result shows that the velocity increases without bound as the particle falls. Can

you suggest a new drag force law which would produce a finite terminal velocity? Explain
your suggestion.

2. For the eigenvalue problem
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show that the operator £ = (L, D) is self-adjoint and positive definite with respect to the
inner product < u,v >= [} uva? dr with weight 22. What does this imply about the eigen-
values of L7 Form the Rayleigh quotient p(u) =< u,Lu > / < u,u > and state the result
that enables you to use this to approximate the eigenvalues of L.

Given that u = ]n(\/XSU) are the eigenfunctions where A is an eigenvalue, and that when
n =20, jo(0) = 1 with j,(0) = 0, suggest simple polynomial trial functions that enable you



to find the first two zeros of jy(2). Explain how you would use these trial functions, but you
do not have to perform any detailed calculations with them.

3. Find the Green’s function G(z,&; 1) defined by
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where p is not an eigenvalue. Show that this can be written
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where x. = min(z,£) and z. = max(z,§).

Consider G(z,&, 1) as a function of the complex parameter p:
(i) Show that G(x,&, ) has simple poles at a sequence of points g = u,, n = 1,2, ..., and
find the points p,,.
(ii) Find the residue of G(z,&; 1) at p = py.
State the relation between your answers to (i) and (ii) and the eigenvalues, A = )\, and
eigenfunctions, u = u,, of the problem
2
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u(0) =0, u(l) =0.

4. The potential u,(x) due to a surface distribution of sources of strength ¢(x) and the
potential u,(z) due to a surface distribution of dipoles of strength p(x)n(z) on a surface S

are given by
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respectively, where n(x) is the (outward) unit normal on S.

If S is the unit sphere, find the integrals for u, and u, using spherical polar coordinates
x = (r,0,¢) and € = (p,0,¢'). Use these to show that the potential due to a surface
distribution consisting of both dipoles 2f(x)n(x) and sources f(x) is
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where v is the angle between « and &.

Show that this is the same as the solution to the interior Dirichlet problem for a sphere,

Viu =0 lz| <1
u(z) = f(0,¢) on || =1.

5. For the boundary value problem

Uy — Uge = p(z,t) 2 €(0,1), t>0
u(z,0) = f(x), w(z,0)=g(z),
w(0,t) =1(t), ugx(l,t) = m(t),

find the Green’s function G(z,&,t,7) by the method of images, and sketch G with its image
system in the x, t-plane. Find the eigenfunction expansion of the Green’s function. Find the
representation of the solution for u(x,t) in terms of the Green’s function.

6. A viscous fluid is initially at rest between two infinite planes at y = 0, h. At time ¢ = 0 the
plane y = h is set in motion impulsively, so that it has constant velocity U in the z-direction
for ¢ > 0. Show that after the impulse, the velocity in the fluid is given by
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where v is the kinematic viscosity of the fluid.

Hence show that the stress per unit area on the plane y = h decreases monotonically in ¢
from the initial impulse to an ultimate value of Up/h.



