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Problem �� Suppose that f � R� R is Lebesgue integrable with
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Show that if � � R� R is bounded and continuous then
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Problem �� Show that each of the following series converges uniformly on every
compact subset of �	� 
�� to a function of x that is di�erentiable on �	� 
��� In which
cases can the derivative be determined using termbyterm di�erentiation�
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Problem �� Let f� and g� be continuous realvalued functions de�ned on ���� ���
Consider the sequences ffng and fgng given by

fn���x� � sinx �
gn�x� � gn��x�
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e�jx�yjgn�y� dy

gn���x� � cosx �

Z x

�x

yfn�y� dy�

Show that there exist continuous functions f and g de�ned on ���� �� such that fn � f
and gn � g pointwise�
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Problem �� The expressions below de�ne functions on the interval �	� 
��� For each of
these functions determine the points x � �	� 
�� where the fourier series of the function
converges to the value of the function at x�
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Problem �� De�ne the branch of w �
p
z � � such that Rew � 	 on one of the

sheets�

�A� How many Riemann sheets does w have�
�B� With the branch cut de�ned such that Rew � 	 on one of its sheets� what can

be said about the Rew on the remaining sheets�

Problem �� Find all the branches of w �
p
� �

p
z�

Problem �� Is u � �x� � y����� cos
�
�

�
tan���y�x�

�
harmonic� On what domain�

Problem �� Evaluate for a � 	� a � 	� and a � 	�

I�a� �

Z ��

��

eiax

� � x�
dx�

On what domain is I�a� a complex analytic function of a�

Problem 	� State the maximum modulus theorem� Find the point�s� where the
modulus of f�z� � z� � � attains is maximum on jzj � ��


