Ph.D Qualifying Exam in Analysis

August 29, 2001

Problem 1. Let f be a non-negative measurable function on a measure space (X, M, μ) , and define $\lambda(E) = \int_E f d\mu$ for $E \in M$.

- (a) Prove λ is a measure on M.
- (b) Prove that if g is a non-negative measurable function on (X, M, μ) that $\int g d\lambda = \int f g d\mu$. (Hint: Prove the result first for g a simple function, then use the monotone convergence theorem.)

Problem 2. Let $f_n(x) = x/(1 + nx^2)$ if $x \in \mathbb{R}$, n = 1, 2, ... Find the limit function f of the sequence $\{f_n\}$ and the limit function g of the sequence $\{f'_n\}$.

- (a) Prove that f'(x) exists for every x, but that $f'(0) \neq g(0)$. For what values of x does f'(x) = g(x)?
- (b) On what subintervals of \mathbb{R} does $f_n \to f$ uniformly?
- (c) On what subintervals of \mathbb{R} does $f'_n \to g$ uniformly?

Problem 3. Establish the validity of the following formulas:

(a)
$$x = 2 \sum_{n=1}^{\infty} \frac{(-1)^{n-1} \sin nx}{n}$$
 if $-\pi < x < \pi$.
(b) $x^2 = \frac{\pi^2}{3} + 4 \sum_{n=1}^{\infty} \frac{(-1)^n \cos nx}{n^2}$ if $-\pi \le x \le \pi$.

Problem 4. (a) Use Liouville's theorem to show that any nth degree polynomial $P_n(z)$, $n \ge 1$, has a zero

(b) Prove the result in (a), but this time use the maximum modulus theorem.

Problem 5. Evaluate the following integrals:

(a)
$$\int_{|z|=2} ze^{3/z} dz$$
, (b) $\int_{|z|=1} \frac{dz}{(1-e^{-z})^n}$, where n is a positive integer,
(c) $\int_{-\infty}^{\infty} \frac{\cos x - \cos a}{x^2 - a^2} dx$, $a \in \mathbb{R}$.

Problem 6. (a) Find the number of zeros of $f(z) = z^4 - 5z + 1$ in $1 \le |z| \le 2$.

(b) Suppose that f is entire and f(z) is real if and only if z is real. Use the argument principle to show that f can have at most one zero.