Ph.D Qualifying Exam in Analysis

May 11, 2000

Problem 1. Let X = N, $\mathbf{X} = \text{power set of } N$, and μ be the counting measure on \mathbf{X} . Suppose f is a nonnegative function on X = N.

- (a) Prove $f \in M^+(X, \mathbf{X})$.
- (b) Prove $\int f d\mu = \sum_{n=1}^{\infty} f(n)$.
- (c) If $f \in L_p$ and $1 \le p \le s < \infty$, show that $f \in L_s$.

Problem 2. If $\{x_n\}$ is an increasing sequence of points in [a,b] and if $\sum |c_n|$ converges, prove $f(x) = \sum_{n=1}^{\infty} c_n \chi_{[a,b]}(x)$ converges uniformly and that f is continuous for all $x \neq x_n$.

Problem 3. Let $f(x) = (\pi - x)/2$, $x \in (0, 2\pi)$ and f be 2π -periodic.

- (a) Compute the Fourier series generated by f to show that $\sum_{n=1}^{\infty} (\sin nx)/n$ converges on $(0, 2\pi)$. Be sure to justify the convergence.
- (b) Use part (a) and Parseval's equality to prove $\sum_{n=1}^{\infty} 1/n^2 = \pi^2/6$.
- (c) Use parts (a) and (b) to show that on $(0, 2\pi)$,

$$\sum_{n=1}^{\infty} \frac{\cos nx}{n^2} = \frac{x^2}{4} - \frac{\pi x}{2} + \frac{\pi^2}{6}.$$

Does the result also hold at $x = 0, 2\pi$? Why?

Problem 4. Define the residue at infinity by

$$Res(f(z); \infty) = \frac{1}{2\pi i} \int_{C_{\infty}} f(z)dz,$$

where C_{∞} denotes the limit $R \to \infty$ of a circle of radius R. Also, define f to be analytic at infinity if f(1/t) is analytic at t = 0.

(a) Show that if f is analytic at ∞ with $f(\infty) = 0$, then f has the expansion

$$f(z) = \frac{a_{-1}}{z} + \frac{a_{-2}}{z^2} + \dots$$

- (b) Given the assumptions in (a), show that $Res(f(z); \infty) = \lim_{z \to \infty} zf(z)$.
- (c) Show that for every rational function f(z),

$$Res\left(f(z);\infty
ight) = \sum_{j=1}^{N} Res\left(f(z);z_{j}
ight),$$

where $z_1, ..., z_N$ denote the singularities of f.

(d) Use the above ideas to compute

$$\int_C \frac{1 + 2z^2 + 3z^3 + 4z^4 + 5z^5}{1 + z + 27z^6} dz,$$

where C is a circle of radius 2.

Problem 5.

- (a) A nonconstant function F(z) is such that F(z+a)=F(z), F(z+bi)=F(z) for all z, where a,b>0 are given constants. Prove that F(z) cannot be analytic in the rectangle $0 \le x \le a, 0 \le y \le b$.
- (b) Let f be analytic in a neighborhood of the closed unit disk. If |f(z)| < 1 for |z| = 1, show that there is a unique z with |z| < 1 and f(z) = z. If $|f(z)| \le 1$ for |z| = 1, what can you say? If |f(z)| = 1 for |z| = 1, find a formula for f.

Problem 6. Evaluate the following using contour itegration. (Justify your results.)

(a)
$$\int_{0}^{\infty} \frac{x^{\alpha - 1}}{1 + x} dx \quad (0 < \alpha < 1) \qquad (b) \quad \sum_{n=1}^{\infty} \frac{1}{1 + n^{2}}.$$