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Problem �� For each series below determine the complex values of z for which it
converges�
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Problem �� Suppose fn � �a� b� � R is di�erentiable �n � N and that fn converges
uniformly to a limit function f �

�A� Show �by example� that f may not be di�erentiable on �a� b��
�B� Show �by example� that even if f is di�erentiable f �n may fail to converge

pointwise to f ��
�C� Show that the function F dened by
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exists and is di�erentiable for x � ��� ����
�D� Suppose that h � R� � R has continuous partial derivatives of order one�

Suppose that g � ��� ��� R is Lebesgue integrable� Dene F � R� R by

F �x� �
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h�x� y�g�y� dy�

Show that F is di�erentiable on R and that
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Problem �� Let f� and g� be continuous complex�valued functions dened on ��� ���
Consider the sequences ffng and fgng given by

fn���x� � sinx 
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gn�s� ds�

gn���x� � cosx 
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Show that there exist continuous functions f and g dened on ��� �� such that fn � f
and gn � g pointwise�
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Problem �� Prove the Riemann�Lebesgue lemma which states that if f is Lebesgue
integrable on the interval I then
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Problem �� Discuss the singularities of
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Problem �� Discuss w � cosh���z� and calculate dw�dz�

Problem �� Evaluate the following integrals using contour integration�
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Problem �� Consider an nth degree polynomial

P �z� � zn 
 an��z
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with n distinct roots fz�� z�� � � � � zng�
�A� Suppose R � maxfjz�j� jz�j� � � � � jznjg� Use residues to compute
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in terms of the roots of P �
�B� Use the parameterization z � Rei� to convert the contour integral in �A� to

a denite integral over the interval ��� ���� For large R evaluate this denite
integral in terms of the coe�cients of the polynomial�

�C� What well�known relationship between the coe�cients and the roots of a poly�
nomial follows from the results of �A� and �B��


