PhD Qualifying Examination Part A: Analysis January 15-16, 2004

- 1. A sequence of functions $\{f_n\}$ defined on a set E in a metric space X with metric d, is said to be equicontinuous on E if for every $\epsilon > 0$, there exists $\delta > 0$ such that $|f_n(x) f_n(y)| < \epsilon$ whenever $d(x,y) < \delta$ for $x,y \in E$, for each $n \in \mathbf{Z}^+$. Let C(K) denote the set of continuous functions on a compact metric space K. Prove that if $f_n \in C(K)$ for each $n \in \mathbf{Z}^+$ and if f_n converges uniformly on K, then $\{f_n\}$ is equicontinuous on K.
- 2. Prove the Riemann-Lebesgue Lemma: If I is any interval of \mathbf{R} and $f \in L(I)$, then for each $\beta \in \mathbf{R}$,

$$\lim_{\alpha \to \infty} \int_I f(t) \sin(\alpha t + \beta) \ dt = 0.$$

- 3. (a) Let $f_n = n\chi_{[1/n,2/n]}$. Show that $f_n \to 0$ for all x, but does not converge to 0 in $L_p(\mathbf{R}, \mathbf{B}, \lambda)$.
 - (b) Let (X, \mathbf{X}, μ) be a measure space. Suppose $f_n \to f$ almost everywhere where $f_n \in L_p$ and f is measurable. Prove that if there exist $g \in L_p$ such that $|f_n| \leq g$ for all n and x, then $f \in L_p$ and $f_n \to f$ in L_p .
 - (c) Does the result in part (a) contradict the result in part (b)?
- 4. Consider the real-valued function $u(x,y) = x^3 3xy^2 + 2y$.
 - (a) Show that u(x,y) can be the real part of an analytic function, f(z).
 - (b) Determine the imaginary part of this analytic function, v(x,y), where v(-1,1)=-2.
 - (c) Determine f(z).
 - (d) Determine the integral

$$\oint_C \frac{f(z)}{z+1} dz$$

where C is the curve described in polar coordinates by $r = 1 + \cos \theta$, $0 \le \theta < 2\pi$ and is traversed in the direction of increasing θ .

5. (a) Determine if the following statement is true or false: If f is analytic at each point of a closed contour Γ , then

$$\oint_{\Gamma} f(z)dz = 0.$$

If this is true, state why, and if it is false, give a counter-example.

- (b) Let the nonconstant function f be analytic in the bounded domain D and continuous up to and including the boundary B. Prove that if |f(z)| is constant on B, then f must have at least one zero in D.
- 6. Use complex variables techniques to evaluate the following integrals:
 - (a) $\oint_{\Gamma} \frac{1}{z^2+1} dz$, where Γ is:
 - i. the positively oriented circle of radius $\sqrt{2}$ centered at (1,1) in the complex plane,
 - ii. the negatively oriented circle of radius 1 centered at (0, 1), and
 - iii. the positively oriented circle of radius 2 centered at the origin.
 - (b) $\oint_{\Gamma} \frac{\cos 2z}{(z-\pi)^3} dz$, where Γ is a positively oriented square centered at the origin with sides of length 7.
 - (c) $\int_{-\infty}^{\infty} \frac{e^{-i2x}}{x-3} dx.$