Doctoral Qualifying Exam: Real and Complex Analysis

Thursday, January 13, 2000

1. Consider the function f defined on R^1 by

$$f(x) = \begin{cases} 0 & \text{(x irrational),} \\ \frac{1}{n^2} & \text{(} x = m/n \text{ in lowest terms)} \end{cases}$$

with $f(0) \equiv 0$.

- (a) Prove that f is continuous at every irrational point, and that f has a simple discontinuity at every rational point except 0.
- (b) Is f Riemann integrable on [0,1]? (Justify your answer.)
- (c) Is f Lebesgue integrable on [0,1]? (Justify your answer.)
- (d) If your answer in (b) or (c) is yes, then evaluate the integral.
- (e) Find all x for which f(x) is differentiable.
- 2. (a) Show that

$$\cos x + \ldots + \cos nx = \frac{\sin (n + \frac{1}{2})x - \sin \frac{x}{2}}{2 \sin \frac{x}{2}}.$$

- (b) Prove that if a_n is decreasing with $\lim_{n\to\infty} a_n = 0$, then the series $\sum_{n=1}^{n=\infty} a_n \cos nx$ converges provided $x \neq 2k\pi$, where k is an integer.
- 3. (a) Let $\{f_n\}$ and $\{g_n\}$ be sequences of bounded functions which converge uniformly on a set E. Show that the sequence $\{f_ng_n\}$ converges uniformly on E.
 - (b) After removing the boundedness assumption in part (a), provide a counterexample for which the sequence $\{f_ng_n\}$ does not converge uniformly.
- 4. Evaluate the following quantities using contour integration in the complex plane:

$$\int_0^\infty \frac{(\ln x)^2}{x^2 + 4} \, dx$$

(b)
$$\int_0^{2\pi} e^{\cos\theta} \cos(n\theta - \sin\theta) d\theta$$

where n is a positive integer

5. Given $f(z) = \sqrt{z}/(1 + \sin z)$, find the Laurent expansion in some annular region about $z = \pi/2$. Classify each singularity of this function, including the point at infinity.

- 6. (a) Let f(z) be analytic in a domain D. Show that if the conjugate of f is analytic in D, then f(z) is constant in D.
 - (b) State the maximum modulus theorem. Find the maximum modulus of $f(z)=z^2+2z+3\,i$ for $|z|\leq 1$.
 - (c) In which quadrants do the roots of $f(z) = z^4 + z^3 + 4z^2 2z + 3$ lie?