Read each problem carefully. Show all your work for each problem. No Calculators!

1. (a) (8) Determine if the functions \(y_1, y_2 \) are linearly dependent or independent:

 (i) \(y_1 = |t - 1|, \ y_2 = 2(t - 1) \), \((ii) \ y_1 = 3t + 1, \ y_2 = t + 3 \)

 (b) (8) Find a function \(g(x) \) which satisfies the conditions: \(W(f, g) = x, \ f(x) = x \).

2. (a) (12) Use the method of undetermined coefficients to find a particular solution of the differential equation

 \[y'' - y' = 2e^t - 1 - t \]

 (b) (6) Determine the general solution of the above equation

3. (a) (12) Given that \(y_1 = e^{-x} \) is a solution of the differential equation

 \[xy'' + (x - 1)y' - y = 0, \ x > 0, \]

 use the method of reduction of order to find the second linearly independent solution \(y_2 \).

 (b) (6) Determine the homogeneous ODE whose general solution is

 \[y = c_1e^t + c_2te^t + e^{-t}(c_3cos2t + c_4sin2t) \]

4. (16) Use the method of variation of parameter to find a particular solution of the differential equation

 \[2y'' + 4y' + 2y = \frac{1}{t}e^{-t}, \ t > 0 \]

5. (16) Determine the form of particular solution of the following ODE, using the method of undetermined coefficients. Do NOT evaluate the constants.

 \[y^{(4)} + 2y^{(3)} + 2y'' = 4e^t - 2e^{-t}cos(t) + te^{-t} \]

6. (16) Solve the initial value problem

 \[y^{(3)} - y'' - y' + y = 0, \ y(0) = 2, \ y'(0) = -1, \ y''(0) = 0 \]