Math 111 – Spring 2014 Final Examination

Please complete the following problems. All work must be shown in order to receive full credit. Answers without explanation will receive *no* credit. The use of books, notes, calculators, or any other external sources of information is not allowed during this examination.

1.(18 pts.) Evaluate the following limits:

a.
$$\lim_{x \to 2^{-}} (x - 2) \tan\left(\frac{\pi x}{4}\right)$$

b.
$$\lim_{x \to 0^{+}} x^{\frac{1}{x}}$$

c.
$$\lim_{x \to \infty} x^{\frac{1}{\sqrt{x}}}$$

2.(18 pts.) Find y'(x) for the following:

a.
$$y = \tan(x) \arctan(x)$$

b. $y = \sin(xy) + e^{y}$
c. $y = (\cos(x))^{x}$

3.(18 pts.) Find y'(x) for the following:

a.
$$y = \frac{x^3}{x + \ln(x)}$$

b. $y = \int_{\sqrt{3}}^{x^3} \cos(t^2) dt$
c. $y = \cos^2(\sec(2^x))$

4.(21 pts.) Evaluate the following integrals:

a.
$$\int_{1}^{2} \left(\cos\left(\frac{\pi x}{2}\right) + \frac{2}{x} \right) dx$$
b.
$$\int \frac{1+x}{\sqrt[3]{x}} dx$$
c.
$$\int_{-1}^{1} \frac{x}{1+x^{2}} dx$$

5.(14 pts.) Evaluate the following integrals:

a.
$$\int_0^{\pi} \frac{\sin(x)}{2 + \cos(x)} dx$$

b. $\int x \sec^2(x^2) dx$

6.(14 pts.) Evaluate the following integrals:

a.
$$\int \frac{\sin(\sqrt{x})}{\sqrt{x}} dx$$
 b. $\int x\sqrt{x-2} dx$

7.(10 pts.) Find the total area between $y = e^x$ and $y = e^{-x}$ for $-1 \le x \le 2$.

8.(10 pts.) Find the area of the region enclosed by $y = x^2 + x - 1$ and y = 2x + 1.

9.(20 pts.) This question is about tangents and normals to curves.

- **a.** Find the tangent line to $y = (\arcsin(x))^2$ at $x = \frac{1}{2}$. **b.** Find the normal line to $y = \sqrt{1 + \sqrt{x}}$ at x = 1.

10.(11 pts.) Find the right triangle with hypotenuse 2 ft which has the greatest area using calculus methods. Show that your result is a maximum.

11.(11 pts.) A spherical balloon is inflated so that its volume is increasing at the rate 6 cm^3/min . At what rate is the radius increasing when the radius is 3 cm?

12.(35 pts.) Consider the function $y = \frac{x^2 + 4}{x^2 - 4}$.

- **a.** Find all asymptotes of this function.
- **b.** Find the intervals on which this function is increasing or decreasing.
- **c.** Find the intervals on which this function is concave up or concave down.

d. Determine the points (if any) at which this function has a local maximum, a local minimum, or a point of inflection.

e. Sketch a graph of this function making sure to label the asymptotes from part a and the points found in part **d**.