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Linear Stability (cont.)

We present the results of semester long project focusing on
the instabilities that develop in two-phase flow in Hele-Shaw
geometry. Experimentally, we have considered few different fluid
combinations: water-glycerol, water-PEO, and water-8CB (nematic
liquid crystal flow). The last two combinations are known to exhibit
non-Newtonian behavior that influences the pattern formation
process. Theoretically, we have carried out linear stability analysis
and compared the predictions with the experimental results.
Computationally, we have carried out Monte Carlo type of
simulations based on Diffusion Limited Aggregation (DLA)
approach. We have computed various measures of the emerging
patterns, including fractal dimension for both experimental and
computational results, and we discuss to which degree non-
Newtonian behavior of the considered fluids influences these
measures.

Hele-Shaw Cell and Saffman-Taylor Instability
Fluid1  Fluid 2

A Hele-Shaw cell contains two plates, /
held at constant, small, distance from

one another. A fluid, Fluid 2, is

sandwiched between the plates.

Another fluid, Fluid 1, is injected 7

into the Fluid 2. The boundary |

between the two fluids in unstable; this is called Saffman-Taylor
instability. When two Newtonian fluids are used, the system can be
modeled using Laplace’s Equation, V2P = 0, when P is pressure.
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Linear Stability

The boundary (R,) between the less viscous fluid and the
larger viscosity fluid would grow as a circle under ideal conditions.
However small perturbations from imperfections on the plates,
small differences in the gap distance, or other conditions that cause
a lack of uniformity cause differences in the growth of smaller
viscosity fluid.

The effect of the perturbations () can be modeled as a
Fourier transform where N is the amplitude of the perturbation. The
curvature of the interface (k) to the first order is the curvature of the
inner circle k<=1 /R, and to the second order is the curvature of the
perturbationxy = —n+n,,/R;.

Assuming that the pressure (P) follows Laplace’s equation
V2P = 0, with boundary conditions 2| =y, where y is the
surface tension. Assuming the outer edqge of the stationary fluid
(R,) is large enough (R,>>R,) to be unaffected by the pressure of
the fluid being injected we set the boundary condition to be
P| =0.

2 Given Laplace’s equation and the preceding boundary
conditions, the solution to the first order is

P(r,0) = g ( ],'ql + (1 — m*)r mp).

1 ln(R—z)

The velocity of the fluid (u), and therefore, the boundary in a
Hele-Shaw cell is expressed by Darcy’s Law u = (b*/12u)VP,
where b is the distance between the parallel plates and is the
viscosity of the more viscous liquid. Using this equation for the
velocity we can calculate the time evolution of the interface, and
solve for the change in the perturbation over time
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N =R[-2+m(1+ Ril (1 —m®)n.

Calling the equation in the square brackets the growth rate (o), the
equation for the perturbation can then be expressed as n(m, t) =
n(m, 0)e°t. So if 6>0 the perturbation is unstable. The effect of
an unstable perturbation is growth of perturbations at a faster rate.
This effect is called “fingering”.

It is noteworthy to include that by assuming surface tension is zero,
the Hele-Shaw problem can be simplified and have exact solutions
obtainable through complex variables methods (such as conformal
mapping). However surface tension is a key to regularizing the
problem -- without it, arbitrary solutions can be found and physical
applications, such as the distance between fingers, cannot be
predicted.

Comparison of Linear Stability & Experimental Results

Area flow rate vs. wavelength of perturbations (rad)
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Above we see comparison of linear stability and experimental
results as a function of flow rate for two different separation
distances between the plates, b.

Experimental Set-up
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Optical Table

* An optical table was used. Four stand bars where secured in the
table, so they could hold up the cell.

* A white piece of paper with a needle sized hole in the center
was placed on top of the bars.

* The two plates, identical expect for a needle sized hole in the
center of one, where used.

* A piece of tape was placed over the hole in the plate, and that
plate was placed on top of the white paper.

« Spacers where placed around the edges of that plate.

Experimental Set-up (cont.)

* Fluid 1 was poured in the center of the plate. The other plate was
placed on top.

* A syringe, connected to tubing and a needle, was filled with Fluid
2, and the needle was placed in the hole in the bottom plate.

* Acamera was mounted above the system to record the results.

* A weight was placed on the plunger of the syringe, and Fluid 2
was injected into Fluid 1.

Experimental Results: Newtonian

Fluid 1: Glycero
Fluid 2: Water
Spacing: 0.82 mm
Fractal Dimension: 1.865

Fluid 1: Glycero
Fluid 2: Water
Spacing: 0.82 mm
Fractal Dimension: 1.880

Experimental Results: Non-Newtonian

Fluid 1: PEO (Polymer Solution) Fluid 1: PEO (Polymer Solution)

Fluid 2: Water
Spacing: 0.82 mm
Fractal Dimension1.755

Fluid 2: Water
Spacing: 0.22 mm
Fractal Dimension: 1.790

Monte Carlo Simulations

Monte Carlo Methods can be used to solve Laplace’s
equation. Diffusion limited aggregation simulations are based on
Monte Carlo simulations.

To apply the Monte-Carlo Method to this system, the circular
area occupied by a Newtonian fluid is broken down into a grid. A
‘seed” is placed in the center of the circle; this seed represents that
injected Newtonian fluid. Each grid space unoccupied by the seed is
given a value of zero. Each grid space occupied by the seed is given
a value of one. A number of “walkers” were placed randomly on the
circle surrounding the seed. The circle must have a large radius to
mimic the walkers coming in to the seed from infinity. Each walker
moves randomly, either up, down, left or right. Each direction is
equally probable. When the walker hits the seed, there is a
probability it will “stick” to the seed. If it sticks, the space is given a
value of one and it becomes part of the seed. The probability of the

walker sticking depends on the local curvature of the seed,

Ny -1
P(Nt)=A(lzt— )+B,

21

When A is equivalent to surface tension, and B is an adjustable
parameter.) The growing seed is model of Fluid 1 as it is injected
into Fluid 2.

This method leaves the possibility for holes to form in the
simulation. A solution to fill these holes is to move the walkers into
the holes as they are created. This is accomplished by allowing a
walker than has already “stuck” to move into the neighboring grid
space that has a lower energy.

Instabilities of two-phase Hele-Shaw flow of complex fluids

Supported by NSF Grant No. DMS-1211713

A non-Newtonian fluid in a Hele-Shaw cell reacts differently
than a Newtonian fluid. Viscosity determines how difficult it is for the
layers of fluid to move across each-other; in other words viscosity
determines how the fluid flows. For Newtonian fluids the viscosity is a
constant. For non-Newtonian fluids, specifically the Carreau model
for shear thinning fluids, viscosity depends on the shear rate and for
the Hele-Shaw problem the shear rate depends on the fluid velocity.
The idea of velocity is difficult for a DLA simulation; suppose a
particle sticks and occupies a cell, it then checks for unoccupied cells
above, below, left or right of it. If any of these are occupied and its
opposite cell is empty the empty cell is given a velocity number of 1,
meaning that the interface is growing fast in that direction. After each
new particle sticks increase all of the velocity numbers in the matrix
by 1, simulating the interface is growing fast in the cell with the
lowest velocity number. Finally, we apply the probability modification
that increases the probability the particle will stick based on the
parameter k- which is the current time-step or current number of
particles, and C is the velocity number described previously:

Simulation Results: Newtonian

Mewtonian Simulations

o

Surface Tension of simulations vs.
space between fingers compared
to a square root relation as seen Iin

linear stability analysis.

Fractal Dimension: 1.7933

Simulation Results: Non-Newtonian

Fractal Dimension: 1.6895
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