DOCTORAL QUALIFYING EXAM Department of Mathematical Sciences New Jersey Institute of Technology

Statistics Part B: Real Analysis and Statistical Inference

August 2014

The first three questions are about Real Analysis and the next three questions are about Statistical Inference.

- 1. (a) State the definition of a measure.
 - (b) Prove that if $A \subset B$, then $\mu(A) \leq \mu(B)$.
 - (c) Prove that if $A_1 \subset A_2 \subset A_3 \subset \ldots$, then

$$\lim_{j \to \infty} \mu(A_j) = \mu\left(\bigcup_{i=1}^{\infty} A_i\right).$$

(d) Prove that if $A_1 \supset A_2 \supset A_3 \supset \ldots$ and $\mu(A_1) < \infty$, then

$$\lim_{j \to \infty} \mu(A_j) = \mu\left(\bigcap_{i=1}^{\infty} A_i\right).$$

2. The Hardy-Littlewood-Sobolev inequality reads:

$$\left|\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}f(x)|x-y|^{-\lambda}g(y)\,dx\,dy\right|\leq C\|f\|_p\|g\|_q,$$

where p, q > 1, $f \in L^p(\mathbb{R}^n)$, $g \in L^q(\mathbb{R}^n)$, $0 < \lambda < n$ with $\frac{1}{p} + \frac{\lambda}{n} + \frac{1}{q} = 2$, and C > 0 depending only on p, q and n.

(a) Show that this inequality *cannot* hold for any $0 < \lambda < n$ such that

$$\frac{1}{p} + \frac{\lambda}{n} + \frac{1}{q} \neq 2.$$

- (b) If $\lambda = n 2$ and p = q, for which values of n and p does the Hardy-Littlewood-Sobolev inequality hold?
- (c) Is it possible to choose p = q = 2 in the Hardy-Littlewood-Sobolev inequality?
- 3. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined as

$$f(x) := \begin{cases} \sqrt{1 - |x|^2}, & |x| \le 1, \\ 0, & |x| > 1. \end{cases}$$

- (a) Sketch the graph of this function. Does this function belong to any of these classes (justify your answer): $C(\mathbb{R}^2)$, $C^1(\mathbb{R}^2)$, $C^{\infty}(\mathbb{R}^2)$, $C_c(\mathbb{R}^2)$, $C_c^{\infty}(\mathbb{R}^2)$?
- (b) (extra credit) Prove that this function belongs to $W^{1,p}(\mathbb{R}^2)$ for any $p \in [1,2)$.

- 4. Let X_1, \ldots, X_n be independent identically distributed $N(0, \theta)$ where $0 < \theta < \infty$.
 - (a) Find a sufficient statistic for θ .
 - (b) Find an unbiased estimator of θ based on the above sufficient statistic and find the variance of the estimator.
- 5. Let X_1, \ldots, X_n be an independent identically distributed sample from the Cauchy distribution with probability density function given by

$$f(x;\theta) = \frac{1}{\pi [1 + (x - \theta)^2]}, \qquad -\infty < x < \infty, \quad -\infty < \theta < \infty.$$

- (a) Find the Cramer-Rao lower bound for an unbiased estimator of θ .
- (b) What is the asymptotic distribution of $\sqrt{n}(\hat{\theta} \theta)$ if $\hat{\theta}$ is the maximum likelihood estimator of θ ?
- 6. Let X_1, \ldots, X_n be a random sample from a gamma distribution with parameters $\alpha = 3$ and $\beta = \theta$. Let $H_0: \theta = 2$ versus $H_1: \theta > 2$.
 - (a) Show that there exists a uniformly most powerful test for H_0 against H_1 , determine the statistic Y upon which the test may be based, and indicate the nature of the best critical region.
 - (b) Find the probability density function of the statistic Y in this problem part (a). If we want a significance level of 0.05, write an equation which can be used to determine the critical region. Let $\gamma(\theta), \theta \ge 2$, be the power function of the test. Express the power function as an integral.