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The first three questions are about Linear Algebra and the next three questions are

about Numerical Methods.

1. Consider the linear system of equations

x1 + 2x2 = 0

x1 + 3x2 + x3 = 1

x2 + 2x3 = 3

(1)

(a) Does this system have a unique solution? If so, find it.

(b) Add a fourth equation

a1x1 + a2x2 + a3x3 = b

Will the new system always have a unique solution? If so, prove it. If not, find the

conditions on the ai (i = 1, 2, 3) and b so that the new system does have a unique solution.

2. Suppose that v is a nonzero column vector in Cn (n > 1) and the matrix A = vvH/(vHv).

(a) What are the eigenvalues of A? Explain.

(b) Is the matrix I +A (I is the n× n identity matrix) diagonalizable? Explain.

(c) Find the determinant of I +A.

(d) What is A2014? Explain.

3. (a) Suppose that u1, · · · , un and v1, · · · , vn are orthonormal bases for Rn. Construct the matrix

A that transforms each vj into uj to give Av1 = u1, · · · , Avn = un.

(b) Find the SVD of the matrix

A =

[
−1 1 0
0 −1 1

]
4. (a) Apply the backward Euler method to the problem Y ′ = λY for x > 0 with Y (0) = 1 and λ

an arbitrary real constant. Let yh(xn) be the numerical approximation to the true solution

evaluated at xn with a step size h. Show that the error is

Y (xn) − yh(xn) = −λ
2xne

λxn

2
h+O(h2).

(b) Apply the trapezoidal method to Y ′ = λY for x > 0 with Y (0) = 1 and λ an arbitrary real

constant. Show first that

yh(xn) =

(
1 + λh/2

1 − λh/2

)n
,

and then show that

Y (xn) − yh(xn) = −λ
3xne

λxn

12
h2 +O(h4).



5. Show that the following iteration for root finding is a second-order method:

xn+1 = xn −
f(xn)

D(xn)
, D(xn) =

f(xn + f(xn)) − f(xn)

f(xn)
, n ≥ 0.

6. Consider the following two-step method for solving the initial value problem y′ = f(x, y), y(0) =

y0:

yn+1 =
1

2
(yn + yn−1) +

h

4

[
4y′n+1 − y′n + 3y′n−1

]
, n ≥ 1

with y′n ≡ f(xn, yn) and h is the step size. Show that it is second-order, and find the leading

term in the truncation error. Discuss the stability of this two-step method.


