Part B: Real and Complex Analysis

DOCTORAL QUALIFYING EXAM, AUGUST 2013

The first three questions are about Real Analysis and the next three questions are about Complex Analysis.

1. Prove the Schwartz inequality

$$|(f,g)| \le ||f|| \cdot ||g||$$

Hint: consider the expression $||f + tg||^2$, where t is a scalar, this expression is a quadratic polynomial of t, and then find the value of its maximum.

Deduce that

$$\sum a_n b_n \le \left(\sum a_n^2\right)^{1/2} \left(\sum b_n^2\right)^{1/2}$$

2. Show that

$$\frac{d}{dt}\left[\int_{a(t)}^{b(t)} f(x,t)dx\right] = f(b(t),t)b'(t) - f(a(t),t)a'(t) + \int_{a(t)}^{b(t)} \frac{\partial}{\partial t}f(x,t)dx$$

provided f and $\partial f/\partial t$ are continuous on $[a_0, b_0] \times B$ where B is open, that $a_0 \leq a(t) \leq b_0$ and $a_0 \leq b(t) \leq b_0$ for every $t \in B$, and that the functions a, b are of class $C^{(1)}$. (Hint: let $G(x,t) = \int_{a_0}^x f(s,t) ds$ so that $\partial G/\partial x = f$. Calculate the derivative of (G(b(t),t) - G(a(t),t)).

- 3. Let us consider a continuous functions f(x) as well as its derivative, where $f(x) = \frac{1}{2}A_0 + \sum_{n=1}^{\infty} (A_n \cos nx + B_n \sin nx)$ and $A_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(y) \cos ny dy$, $B_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(y) \sin ny dy$. Let us also consider the partial sum $S_N(x) = \frac{1}{2}A_0 + \sum_{n=1}^{N} (A_n \cos nx + B_n \sin nx)$.
 - Consider the function $K_N(\theta) = 1 + 2\sum_{n=1}^N \cos n\theta$. Show that $\frac{1}{2\pi} \int_{-\pi}^{\pi} K_N(\theta) d\theta = 1$.
 - Using $\cos x = (e^{ix} + e^{-ix})/2$, show that $K_N(\theta) = \frac{\sin(N+\frac{1}{2})\theta}{\sin\frac{1}{2}\theta}$.
 - Show that the functions $X_n = \sin(n + \frac{1}{2})\theta$ for $\theta \in (-\pi, 0)$ and $\theta \in (0, \pi)$ are orthogonal.
 - Use the Bessel's inequality

$$\sum_{n=0}^{\infty} \frac{(g_+, X_n)}{||X_n||^2} \le ||g_+||^2$$

to show that $(g_+, X_n) \to 0$ as $n \to \infty$, where in this case f(x) is a piecewise continuous functions (and its derivative) such that $f(x) = g_+(x)$ for $x \in (0, \pi)$ and $f(x) = g_-(x)$ for $x \in (-\pi, 0)$.

- Do we have the same result for (g_-, X_n) ?
- 4. Let f be a complex-valued analytic function on a domain D in the complex plane \mathbb{C} .

(a) Use the Cauchy–Riemann equations to prove that

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)|f(z)|^2 = 4\left|f'(z)\right|^2$$

on D.

- (b) Prove using (a) that |f| is constant on D iff f is constant on D.
- 5. Consider the function

$$\varphi(z) := \frac{z}{z^4 - 16}.$$

- (a) Find and classify all singularities of φ , and compute the residue at z = 2.
- (b) Find the Laurent series expansion of φ for |z| > 2.
- (c) φ has a single zero in $B_2(0) := \{z \in \mathbb{C} : |z| < 2\}$. Given any positive integer *n*, construct an entire function having *n* distinct zeros in $B_2(0)$.
- (d) What can you say about an analytic function having infinitely many distinct zeros in $B_2(0)$? Explain your answer.
- 6. Let Φ be a function analytic on a domain containing the closure of the upper half-plane $\mathbb{H}_+ := \{z = x + iy \in C : y > 0\}$, and suppose that there exists a positive constant M such that $|\Phi(z)| \leq M/|z|$ for all sufficiently large values of |z|. Use the calculus of residues to give a detailed proof that

$$\Phi(z) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{\Phi(x)dx}{x-z} \quad \forall z \in \mathbb{H}_+.$$

(Hint: Use expanding upper semicircular contours)