Preliminary Exam in Real and Complex Analysis: Summer 2011

- 1. Assume $\{\phi_0, \phi_1, \ldots\}$ is a collection of L_2 functions which form an orthonormal set on some interval I. Let $\{c_n\}$ be any sequence of complex numbers such that $\Sigma |c_k|^2$ converges. Show that there exists a function $f \in L_2(I)$ such that $(f, \phi_k) = c_k$ for each $k \ge 0$.
- 2. Use Fourier series methods to establish and justify the following results.
 - (a) For $0 < x < \pi$

$$\frac{\pi}{4} = \sum_{n=1}^{\infty} \frac{\sin(2n-1)x}{2n-1}.$$

(b) For $0 \le x \le \pi$

$$x = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos(2n-1)x}{(2n-1)^2}.$$

- 3. Consider **R**, with \mathcal{B} the Borel σ -algebra and μ the Lebesgue measure.
 - (a) Let $a_n \in (0, 1)$ be an increasing sequence of points that converges to 1. Define $E_n = [0, a_n]$. Let $f_n(x) = \chi_{E_n}(x)$ where χ is the characteristic function. Does $f_n(x)$ converge almost everywhere, uniformly, in L_p for any $p \ge 1$, in measure or almost uniformly? Show your work.
 - (b) Compute the value of the following integral.

$$\lim_{n \to \infty} \int_0^\infty e^{-nx} \frac{1}{\sqrt{x}} \ d\mu.$$

Be sure to provide justification for all of your work.

4. Integrate using a "keyhole" contour surrounding the branch cut of function x^p , and state conditions on the values of complex parameters p and a required for convergence of this integral:

$$\int_0^\infty \frac{x^p \, dx}{x+a}$$

5. Use Rouché's theorem to show that all roots of the following polynomial are enclosed within a ring 1 < |z| < 2:

$$f(z) = z^5 - 5z + 21$$

Hint: Apply the Rouché's theorem to domains |z| < 1 and |z| < 2.

Rouché's theorem: If f, g are analytic inside and on a simple closed contour C and |f| > |g| on C, then f and f + g have the same number of zeros within the domain bounded by C.

6. Laurent Series

(a) Find the Laurent series of the following function converging in the indicated domain:

$$f(z) = \log\left\{\frac{z-1}{z+2}\right\}, \ |z| > 2$$

Hint: assume the branch cut is the interval [-2, 1], therefore the function is analytic in |z| > 2. You can use an appropriate Taylor expansion of logarithmic function to find this series.

(b) Find the negative-power terms in the Laurent series for the function $1/\cos z$ converging in domain $\frac{\pi}{2} < |z| < \frac{3\pi}{2}$, to show that this series has the following form:

$$\frac{1}{\cos z} = 1 - \frac{4}{\pi} \sum_{m=0}^{\infty} \left(\frac{\pi}{2z}\right)^{2m} + \sum_{m=1}^{\infty} C_{2m} z^{2m}$$

Hint: proceed directly from the integral defining coefficients of Laurent series converging in $r < |z - z_0| < R$:

$$C_n = \frac{1}{2\pi} \int_C \frac{f(z)dz}{(z-z_0)^{n+1}}, \quad n = 0, \pm 1, \pm 2, \pm 3, \dots$$

where C is a simple closed contour within $r < |z - z_0| < R$ and enclosing the inner boundary of this domain.