
Preliminary Exam in Linear Algebra and Numerical Methods: Summer 2011

1. Suppose Stephen (S), Michael (M) and Jack (J) are competing in an election. Each
week, the candidates lose a percentage of their votes to other candidates according to
the following table:

S to M: 5% S to J: 5%
M to J: 49% M to S: 1%
J to M: 49% J to S: 1%

(a) Describe the week-to-week change in vote distribution as a Markov process.

(b) Suppose the distribution of votes is identical in weeks seven and eight. What is
the final distribution of votes?

2. Show that a diagonalizable matrix satisfies its characteristic equation. Is this also true
for noninvertible matrices?

3. Let P and Q be real invertible matrices, and let X be the set of minimizers of ‖P (Ax−
y)‖ (i.e., X = {x ∈ Rn |xminimizes ‖P (Ax − y)‖}. Then it can be shown that the
vector x− in X that minimizes ‖Qx‖ is given by

x− = A−y := Q−1(PAQ−1)+Py

where the ‘+’ symbol denotes the pseudoinverse. (Recall that if x+ = A+y then
ATAx+ = ATy.)

(a) Suppose now that both P and Q are (real) orthogonal matrices. Show that
(PAQT )+ = QA+P T by relating solutions to their corresponding normal equa-
tions, then use this fact to show that A− = A+.
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4. Consider the fixed point iteration method xn = g(xn−1). Assume that

|xn − xn−1| ≤ λn−1|x1 − x0|

where λ < 1. Show that this sequence {xn} satisfies the Cauchy criterion. Hint: A
sequence {xn} satisfies the Cauchy criterion if given any ε, ∃ N such that |xn−xm| ≤ ε
whenever n,m ≥ N .



5. Consider the problem of computing the root α: f(α) = 0.

(a) Derive the secant method

xn+1 = xn − f(xn)
xn − xn−1

f(xn)− f(xn−1)
.

(b) Show that

α− xn+1 = −(α− xn)(α− xn−1)f [xn−1, xn, α]/f [xn−1, xn].

6. The goal of this problem is the analysis of the stability of the following scheme (mid-
point method)

yn+1 = yn−1 + 2hλyn.

(a) Show that this equation admits the roots
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√
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√
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(b) Is the strong root condition satisfied?

(c) Knowing that the general solution is given by yn = β0r
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(d) Show that yn → eλxn when h→ 0.


