Doctoral Qualifying Exam: Linear Algebra and Numerical Methods

23 August, 2010

Problem 1.

(a) Find all 2×2 matrices A such that

$$A^2 = \left(\begin{array}{cc} 1 & 0\\ 0 & 1 \end{array}\right).$$

(b) Find all 2×2 matrices A such that

$$A^2 = \left(\begin{array}{cc} 0 & 1\\ 0 & 0 \end{array}\right).$$

Problem 2. Suppose

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

- (a) Find the four fundamental subspaces (column space, null space, row space and left null space) of A.
- (b) Find the set of all 3×3 real matrices that have the same fundamental subspaces as A.

Problem 3.

(a) Let

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{pmatrix}.$$

What are the eigenvalues of A?

(b) Let B be an $n \times n$ real symmetric matrix with all zeros on the diagonal $(B_{\ell\ell} \text{ for } \ell = 1, \ldots, n)$. Furthermore, suppose that I + B is positive definite. Prove that the largest eigenvalue of B is less than n - 1.

Problem 4.

- (a) (5 points) State the Chebyshev equioscillation theorem.
- (b) (15 points) Let $f \in C^2[a, b]$ with f''(x) > 0 for $a \le x \le b$. Find the linear minimax approximation $q_1^*(x) = a_0 + a_1 x$ to f(x) on [a, b]. Write down the explicit expressions for a_0 and a_1 . What is the minimax error?

Problem 5.

- (a) (5 points) Write down the definition of the spline function of order m.
- (b) (15 points) Let s(x) be a spline function of order m. Let b be a knot, and let s(x) be a polynomial of degree $\leq m 1$ on [a, b] and [b, c]. Show that if $s^{(m-1)}(x)$ is continuous at x = b, then s(x) is a polynomial of degree $\leq m 1$ for $a \leq x \leq c$.

Problem 6.

(a) (10 points) Find all explicit fourth-order formulas of the form

$$y_{n+1} = a_0 y_n + a_1 y_{n-1} + a_2 y_{n-2} + h \left[b_0 y'_n + b_1 y'_{n-1} + b_2 y'_{n-2} \right].$$

(b) (10 points) Show that every such method is unstable.