Doctoral Qualifying Exam: Real Analysis and Probability

August 24, 2009

- 1. Prove or disprove that there exists a continuous function $f : \mathbb{R} \to \mathbb{R}$ such that f([0,1]) = (0,1).
- 2. Let $\{a_n\}_{n=1}^{\infty}$ be sequence of numbers such that $a_n \in [0, 1]$, $a_{n+1} < a_n$ and $a_n \to 0$ as $n \to \infty$. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous, k times differentiable function such that $f(a_n) = 0$ for each n. Prove or disprove that $f^{(m)}(0) = 0$ for each $m \leq k$.
- 3. Prove that the set Q of all rational numbers contained in the interval [-10, 7] is Lebesgue measurable. Find its measure.
- 4. (i) If P is a probability measure on (Ω, \mathcal{A}) and $\{A_n \in \mathcal{A}; n = 1, 2, \dots\}$ are events such that $A_n \downarrow A$, then show that,
 - a) A is an event (i.e., $A \in A$), and
 - b) $P(A_n) \downarrow P(A)$.

(ii) X is an integrable r.v. defined on a probability space (Ω, \mathcal{F}, P) , and \mathcal{A} is an "almost trivial" sub- σ -field contained in \mathcal{F} . Prove that $E(X|\mathcal{A})$ is almost surely a constant c, and that we must necessarily have c = EX.

- 5. (i) If $\{A_n; n = 1, 2, \dots\}$, B and C are events defined on a probability space (Ω, \mathcal{F}, P) , such that
 - (C1) B and C differ by P-null sets, and
 - (C2) there exists N such that $n \ge N \Rightarrow B \subset A_n \subset C$; then prove that,
 - a) $\lim_{n\to\infty} P(A_n) = P(B) = P(C)$; and
 - b) $P(\liminf_{n\to\infty} A_n) = P(\limsup_{n\to\infty} A_n).$

While $P(A_n)$ thus converges under conditions (C1) and (C2) above; does $\lim_{n\to\infty} A_n$ necessarily exist?

(ii) Give a counterexample to show that convergence in probability does *not* imply convergence almost surely.

6. (i) Let $\{X_n : n = 1, 2, \dots\}$ be a sequence of r.v.s defined on a probability space, such that

$$X_n := \begin{cases} n^2, & \text{w.p. } \frac{1}{n^2} \\ -1, & \text{w.p. } \left(1 - \frac{1}{n^2}\right) \end{cases}$$

Show that, as $n \to \infty$, $S_n := \sum_{i=1}^n X_i \longrightarrow -\infty$ a.s. Does X_n converge in distribution? If yes, what does it converge to?

(ii) If $\{X_n ; n = 1, 2, \dots\}$ and $\{Y_n ; n = 1, 2, \dots\}$ are two sequences of r.v.s such that $|X_n| \leq |Y_n|$ a.s., for all $n \geq 1$; then:

- a) Show that, $Y_n \xrightarrow{P} 0 \Longrightarrow X_n \xrightarrow{P} 0$. b) If in fact, $Y_n \xrightarrow{\text{a.s.}} 0$; does it follow that $X_n \xrightarrow{\text{a.s.}} 0$ as well? Justify your answer.