Doctoral Qualifying Exam: Linear Algebra, Probability Distributions and Statistical Inference

August 25, 2009

Problem 1. Consider the vector space $\mathbf{R}^{n \times n}$ consisting of all $n \times n$ matrices with real entries. Define the function $L : \mathbf{R}^{n \times n} \to \mathbf{R}^{n \times n}$ defined by

$$L(X) = X^T.$$

- (a) Show that L is an invertible linear mapping on $\mathbf{R}^{n \times n}$.
- (b) Find the eigenvalues and corresponding eigenspaces of L.
- (c) Find or explain why it is not possible to find a matrix $A \in \mathbf{R}^{n \times n}$ such that

$$L(X) = AX$$
 for every $X \in \mathbf{R}^{n \times n}$.

Problem 2. Let α be a real number. Consider the sequences of vectors $\mathbf{x}_{\ell} \in \mathbf{R}^n$ that satisfies the recursion

$$\mathbf{x}_{\ell+1} = 2\alpha \mathbf{x}_{\ell} - \alpha^2 \mathbf{x}_{\ell-1}.$$

- (a) Find \mathbf{x}_{ℓ} explicitly in terms of \mathbf{x}_0 and \mathbf{x}_1 .
- (b) Find the values of α for which the sequence \mathbf{x}_{ℓ} is bounded regardless of the values of \mathbf{x}_0 and \mathbf{x}_1 .
- (c) For $\alpha = 1$ find necessary and sufficient conditions on \mathbf{x}_0 and \mathbf{x}_1 for the sequence \mathbf{x}_n to be bounded.

Problem 3. Let

$$A = \begin{pmatrix} 0 & 3 & 1 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{pmatrix}.$$

Let r be the dimension of the row space and column space of A, Find an orthonormal basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_r\}$ of the column space, an orthonormal basis $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ of the row space and a set of nonnegative numbers $\{\sigma_1, \ldots, \sigma_r\}$ such that

$$A = \sum_{\ell=1}^r \sigma_\ell \mathbf{u}_\ell \mathbf{v}_\ell^T.$$

Problem 4. Let $X \sim \text{Uniform}(0, 1)$, and 0 < a < b < 1. Set,

$$Y := \begin{cases} 1, & \text{if } 0 < X < b \\ 0, & \text{otherwise} \end{cases}$$

and

$$Z := \begin{cases} 1, & \text{if } a < X < 1 \\ 0, & \text{otherwise} \end{cases}$$

- a) Are Y and Z statistically independent? Why/Why not?
- b) Show that $E(Y|Z) = 1 (\frac{1-b}{1-a})Z$.

Problem 5.

(i) Consider a random variable (r.v.) X which cannot be observed unless it exceeds a value c. The *observed* value of X, is then fefined as a r.v. Y such that its distribution is the same as the conditional distribution of X given $\{X > c\}$; i.e.,

$$Y \stackrel{d}{=} X | X > c$$

Consider the case, where c = 0 and the r.v. X above, is non-negative integer valued, with a finite variance σ^2 , mean μ , and $p_0 \equiv P(X = 0)$. Further suppose the moment generating function (mgf) $M_X(t)$ of X exists in a neighborhood of zero.

- a) Find EY and var(Y) in terms of μ , σ^2 , and p_0 .
- b) Compute the m.g.f. of Y, and use it to verify your results in part a) above.

(ii) Construct the exact likelihood ratio test for testing $H_0: \theta \leq \theta_0$ versus the alternatives $H_1: \theta > \theta_0$, using a random sample of size *n* from the *shifted exponential* model with probability density

$$f(x|\theta) := \begin{cases} e^{-(x-\theta)}, & \text{if } x \ge \theta\\ 0, & \text{if } x < \theta \end{cases}$$

Write down the exact size- α critical region, for rejecting the null hypothesis.

Problem 6. Using a random sample (X_1, X_2, \dots, X_n) from a "binomial (k, θ) " population, with $n \geq 2$. Compute the unique uniformly minimum variance unbised (UMVU) estimator of

$$g(\theta) := P_{\theta}(X_1 = k) = \theta^k.$$