Doctoral Qualifying Exam: Linear Algebra and Numerical Methods

August 25, 2009

Problem 1. Consider the vector space $\mathbf{R}^{n \times n}$ consisting of all $n \times n$ matrices with real entries. Define the function $L : \mathbf{R}^{n \times n} \to \mathbf{R}^{n \times n}$ defined by

$$L(X) = X^T.$$

- (a) Show that L is an invertible linear mapping on $\mathbf{R}^{n \times n}$.
- (b) Find the eigenvalues and corresponding eigenspaces of L.
- (c) Find or explain why it is not possible to find a matrix $A \in \mathbf{R}^{n \times n}$ such that

$$L(X) = AX$$
 for every $X \in \mathbf{R}^{n \times n}$.

Problem 2. Let α be a real number. Consider the sequences of vectors $\mathbf{x}_{\ell} \in \mathbf{R}^n$ that satisfies the recursion

$$\mathbf{x}_{\ell+1} = 2\alpha \mathbf{x}_{\ell} - \alpha^2 \mathbf{x}_{\ell-1}.$$

- (a) Find \mathbf{x}_{ℓ} explicitly in terms of \mathbf{x}_0 and \mathbf{x}_1 .
- (b) Find the values of α for which the sequence \mathbf{x}_{ℓ} is bounded regardless of the values of \mathbf{x}_0 and \mathbf{x}_1 .
- (c) For $\alpha = 1$ find necessary and sufficient conditions on \mathbf{x}_0 and \mathbf{x}_1 for the sequence \mathbf{x}_n to be bounded.

Problem 3. Let

$$A = \begin{pmatrix} 0 & 3 & 1 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{pmatrix}.$$

Let r be the dimension of the row space and column space of A, Find an orthonormal basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_r\}$ of the column space, an orthonormal basis $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ of the row space and a set of nonnegative numbers $\{\sigma_1, \ldots, \sigma_r\}$ such that

$$A = \sum_{\ell=1}^{r} \sigma_{\ell} \mathbf{u}_{\ell} \mathbf{v}_{\ell}^{T}$$

Problem 4. Consider Newton's method for finding the positive square root of a > 0. Derive the following results, assuming $x_0 > 0$, $x_0 \neq \sqrt{a}$.

(a)
$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$$

(b) $x_{n+1}^2 - a = \left[\frac{x_n^2 - a}{2x_n}\right]^2$, $n \ge 0$, and thus $x_n > \sqrt{a}$ for all n.

(c) The iterates $\{x_n\}$ are a strictly decreasing sequence for $n \ge 1$. Hint: Consider the sign of $x_{n+1} - x_n$

(d)
$$e_{n+1} = -\frac{e_n^2}{2x_n}$$
, with $e_n = \sqrt{a} - x_n$.

(e) $\operatorname{Rel}(x_{n+1}) = -\frac{\sqrt{a}}{2x_n} [\operatorname{Rel}(x_n)]^2$, with $\operatorname{Rel}(x_n)$ is the relative error in x_n .

Problem 5. Let $p_2(x)$ be the quadratic polynomial interpolating f(x) at the evenly spaced points x_0 , $x_1 = x_0 + h$ and $x_2 = x_0 + 2h$.

(a) Derive formulas for the error $f'(x_i) - p'_2(x_i), i = 0, 1, 2.$

(b) Bound these errors with $f(x) = \ln(1+x)$. Hint: use the formula $f(t) - p(t) = (t-x_0)...(t-x_n)f[x_0,...,x_n,t]$.

Problem 6. Consider the explicit two-step second order method

$$y_{n+1} = 5y_n - 6y_{n-1} + \frac{h}{2}(f(x_n, y_n) - 3f(x_{n-1}, y_{n-1})) \quad x_0 \le x_n \le b$$
(1)

Consider the problem

$$y' = 0$$
, with $y(0) = 0$, (2)

which has the solution Y(x) = 0. Applying (1) to (2) with $y_0 = y_1 = 0$ give the numerical solution $y_n = 0$, $n \ge 0$. Consider now the perturbed problem to (2) with initial data $z_0 = \varepsilon/2$ and $z_1 = \varepsilon$, and $\varepsilon \ne 0$:

- a) Show that $z_n = \varepsilon \ 2^{n-1}$.
- b) Show that

$$\max_{x_n} |y_n - z_n| = \max_{x_n} |\varepsilon| 2^{n-1} = |\varepsilon| 2^{N(h)-1}$$

where N(h) is the largest subscript N for which $x_N \leq b$.

- c) Show that (1) is unstable.
- d) Recall the root condition and show that it is not satisfied.