Doctoral Qualifying Exam : Real and Complex Analysis Monday August 25, 2008

1. Let I = [a, b] be a compact interval. Suppose the sequence $f_n \to f$ uniformly on I and that each f_n is Riemann integrable on I. Show

- (a) f is Riemann integrable on I.
- (b) $\lim_{n\to\infty} \int_a^x f_n(t) dt = \int_a^x f(t) dt$.
- (c) Does the result in part b) hold if I is an unbounded interval? Explain or give a counterexample.
- **2.** If $f \in M^+(X, \mathbf{X}), \lambda : \mathbf{X} \to \mathbf{R}$ such that $\lambda(E) = \int_E f \ d\mu$, prove λ is a measure.

3. Let f(x) be a 2π -periodic function defined on $[-\pi,\pi]$ by $f(x) = \pi - |x|$, if $x \neq 0$ and f(x) = 0, if x = 0.

- (a) Find the Fourier series generated by f.
- (b) For which values of x, if any, does the Fourier series converge and to what value? Justify your results.
- 4. Find the Taylor or Laurent expansion about z = 0 for the function

$$f(z) = \frac{1}{(z^2 + 1)(z + 2)},$$

when (i) |z| < 1, (ii) 1 < |z| < 2, (iii) |z| > 2.

5. Evaluate

$$\int_0^\infty \frac{t^{a-1}}{1+t} \, dt,$$

where 0 < a < 1 by the method of contour integration.

- 6. Let G be a bounded region and suppose f is analytic in G and continuous on the closure of G.
- (a) Show that if c is a nonnegative constant and |f| = c in G, then f is constant in G (Hint: use the Cauchy-Riemann equations).
- (b) Use the result in (a) to show that if |f| = c for all z on the boundary of G then either f is a constant or f has a zero in G.