Doctoral Qualifying Exam: Linear Algebra, Probability Distributions and Statistical Inference Monday, August 29, 2007

Problem 1

Given the 3×2 matrix:

$$\mathbf{A} = \left(\begin{array}{cc} 2 & 2 \\ 1 & -1 \\ 2 & 2 \end{array} \right).$$

Find bases for the four fundamental subspaces. Find the singular value decomposition (SVD) of this matrix and decompose the matrix into the form $\mathbf{A} = \sum_{i=1}^{2} \alpha_i \mathbf{u}_i \mathbf{v}_i^T$, where $\mathbf{u}_1^T = (1, 0, 1), \mathbf{u}_2^T = (0, 1, 0), \mathbf{v}_1^T = (1, 1), \text{ and } \mathbf{v}_2^T = (1, -1).$

Problem 2

Find the Jordan canonical form \mathbf{J} for the following matrix:

$$\mathbf{A} = \left(\begin{array}{rrr} 2 & 3 & -2 \\ -1 & -2 & 2 \\ -1 & -1 & 1 \end{array} \right).$$

Solve the differential equation $\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x}$, with $\mathbf{x}(0) = (1 \ 1 \ 1)^T$.

Problem 3

Let **A** be an $n \times n$ matrix. Let ρ_1, \ldots, ρ_n be any n positive numbers. Show that every eigenvalue, λ , of **A** must satisfy at least one of the inequalities

$$|\lambda - a_{ii}| \le \sum_{j=1, j \ne i}^n (\rho_i/\rho_j)|a_{ij}| \qquad (i = 1, \dots, n).$$

Problem 4

Consider a random sample X_1, X_2, \ldots, X_n from a normal distribution with mean μ and variance σ^2 . Both μ and σ^2 are unknown. Find the exact likelihood ratio test of hypothesis $H_0: \mu = \mu_0$ versus $H_a: \mu \neq \mu_0$. Show that this test is given by $|t| \geq c$, where $t = \frac{\bar{X} - \mu_0}{\frac{S}{\sqrt{n}}}$ and $S^2 = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{2n-1}$.

Problem 5

Let Y_1, Y_2, \ldots, Y_n denote ar random sample from the exponential denisty function given by $f(y, \theta) = \left(\frac{1}{\theta}\right) \exp^{\frac{-y}{\theta}} I_{(0,\infty)}(y)$, where $\theta > 0$. Find the uniformly minimum variance unbiased estimator of $Var(Y_1)$.

Problem 6

Let X and Y be two independent uniformly distributed discrete random variables on $\{1,2,...,m\}$. Show that $E|X-Y|=\frac{(m-1)(m+1)}{3m}$.