Doctoral Qualifying Exam: Linear Algebra and Numerical Methods Monday, August 29, 2007

Problem 1

Given the 3×2 matrix:

$$\mathbf{A} = \left(\begin{array}{cc} 2 & 2 \\ 1 & -1 \\ 2 & 2 \end{array} \right).$$

Find bases for the four fundamental subspaces. Find the singular value decomposition (SVD) of this matrix and decompose the matrix into the form $\mathbf{A} = \sum_{i=1}^{2} \alpha_i \mathbf{u}_i \mathbf{v}_i^T$, where $\mathbf{u}_1^T = (1,0,1), \ \mathbf{u}_2^T = (0,1,0), \mathbf{v}_1^T = (1,1), \ \text{and} \ \mathbf{v}_2^T = (1,-1).$

Problem 2

Find the Jordan canonical form J for the following matrix:

$$\mathbf{A} = \left(\begin{array}{rrr} 2 & 3 & -2 \\ -1 & -2 & 2 \\ -1 & -1 & 1 \end{array} \right).$$

Solve the differential equation $\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x}$, with $\mathbf{x}(0) = (1 \ 1 \ 1)^T$.

Problem 3

Let **A** be an $n \times n$ matrix. Let ρ_1, \ldots, ρ_n be any n positive numbers. Show that every eigenvalue, λ , of **A** must satisfy at least one of the inequalities

$$|\lambda - a_{ii}| \le \sum_{j=1, j \ne i}^{n} (\rho_i/\rho_j)|a_{ij}| \qquad (i = 1, \dots, n).$$

Problem 4

Let $\Psi(x)=(x-x_0)(x-x_1)\dots(x-x_n)$, and $\rho_n=\min||\Psi(x)||_{\infty}$ where the minimization is over all interpolation nodes $\{x_j\},\ j=0,1,\dots,n$ and the infinity norm is taken on $-1\leq x\leq 1$.

- (a) What is ρ_n ?
- (b) What are the interpolation nodes $\{x_j\}$, j = 0, 1, ..., n to achieve this minimal value ρ_n ?
- (c) Now let $\{x_j\}$, j = 0, 1, ..., n denote the equispaced nodes on [-1, 1], i.e., $x_j = -1 + \frac{2j}{n}$. Show that for this choice of nodes and for large n

$$\frac{||\Psi(x)||_{\infty}}{\rho_n} > \frac{\sqrt{2}}{n} \left(\frac{4}{e}\right)^n. \tag{0.1}$$

(Hint: Consider $\Psi(-1+\frac{1}{n})$ and use Stirling's formula $n! \sim e^{-n} n^n \sqrt{2\pi n}$.)

Problem 5

Cauchy's pricinple value integral is defined via the formula

$$I(f) = \text{p.v.} \int_{-1}^{1} \frac{f(x)}{x} dx = \lim_{\epsilon \to 0+} \int_{-1}^{-\epsilon} \frac{f(x)}{x} dx + \int_{+\epsilon}^{1} \frac{f(x)}{x} dx.$$
 (0.2)

(a) Suppose that we approximate I(f) by

$$I_{\epsilon}(f) = \int_{-1}^{-\epsilon} \frac{f(x)}{x} dx + \int_{+\epsilon}^{1} \frac{f(x)}{x} dx. \tag{0.3}$$

Derive an error estimate for $I_{\epsilon}(f)$ when f is sufficiently smooth.

(b) Suppose that we can evaluate $I_{\epsilon}(f)$ very accurately. How do you obtain a better estimate for I(f) using $I_{\epsilon}(f)$, $I_{\frac{\epsilon}{2}}(f)$, and $I_{\frac{\epsilon}{4}}(f)$? Derive an expression using $I_{\epsilon}(f)$, $I_{\frac{\epsilon}{2}}(f)$, and $I_{\frac{\epsilon}{4}}(f)$ for such estimate.

Problem 6

Consider the theta method for solving the initial value problem:

$$y_{n+1} = y_n + h[\theta f(t_n, y_n) + (1 - \theta) f(t_{n+1}, y_{n+1})], \tag{0.4}$$

where θ is a fixed number in [0, 1].

- (a) Find the order of this scheme.
- (b) Determine all values of θ such that the theta method is A-stable.