Qualifying Exam (August 25, 2004) Linear Algebra, Distribution Theory and Statistical Inference

- 1. (a) Show that the vectors $v^1 = col(1, 1, 0), v^2 = col(2, 0, 1),$ and $v^3 = col(1, -1, 2)$ are a basis for R^3 .
 - (b) Use the Gram-Schmidt procedure to construct an orthonormal basis $\{u^1, u^2, u^3\}$ from the basis given in (a), starting with $u^1 = v^1/||v^1||$ and using the standard inner product.
- 2. Let K and M be $n \times n$ Hermitian matrices, and let M be positive definite. Let the vectors c^1, c^2, \ldots, c^n and the real numbers $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ satisfy

$$Kc^{j} = \lambda_{j}Mc^{j}, \qquad (Mc^{j}, c^{k}) = \delta_{jk}.$$

Prove that

$$\lambda_1 = \max_{x \neq 0} \frac{(Kx, x)}{(Mx, x)},$$

where x is any n-vector. Show that the maximum is achieved when $x = c^1$.

- 3. In the following, consider $n \times n$ matrices A.
 - (a) Show that if A has a complete set of orthogonal eigenvectors, then $AA^* = A^*A$.
 - (b) Use the fact that $AA^* = A^*A$ implies that A has a complete set of orthogonal eigenvectors to prove that Hermitian, skew-Hermitian, and unitary matrices have complete sets of orthogonal eigenvectors.
 - (c) Do all matrices A with distinct eigenvalues satisfy $AA^* = A^*A$? Explain.
- 4. Consider the random vector (X, Y), with joint probability density function

$$f(x, y) = cx^2y$$
, if $x^2 \le y < 1$,
= 0, elsewhere

where c is a suitable normalizing constant. Show that X, Y are uncorrelated, but are not stochastically independent.

- 5 Let X_1, X_2, \ldots, X_n be a random sample from the normal distribution with mean 0 and variance σ^2 . Let $\sigma_0^2 > 0$ be a given value of the population variance and a presigned $\alpha \in (0,1)$. Derive a level α likelihood ratio test for testing $H_0: \sigma^2 = \sigma_0^2$ versus the hypothesis $H_1: \sigma^2 \neq \sigma_0^2$ in the implementable form.
- 6 (i) Show that for any pair of random variables X, Y,

$$Var(Y) = E\{Var(Y|X)\} + Var\{E(Y|X)\}.$$

(ii) Draw a county in the U.S. at random. Then draw n people independently at random from the selected county. Assume n is small relative to the county population. Let X be the number of people in the sample of n, who test positive for a certain disease. If Q denotes the proportion of people who test positive for the disease; then Q is a constant (parameter) for a given county; but is a random variable if the selected county is not indentified since Q may vary between counties. Based on the hierarchical model discribed by: $X|\{Q=q\} \sim Binomial(n,q)$, and $Q \sim Uniform on (0,1)$; show that the Var(X) is

$$\frac{n(n+2)}{12}.$$