Doctoral Qualifying Exam : Real Analysis and Probability Monday June 12, 2008

1.

- (a) Let $X = \mathbf{R}$, $\mathbf{X} = \mathbf{B}$ and the Lebesgue measure. Consider the sequence of functions $f_n(x) = \chi_{[n,n+1/n]}$. Does this sequence converge uniformly, almost everywhere, in L_p , in measure or almost uniformly? In each case prove it or explain why not.
- (b) Give an example of a function that converges almost everywhere, but not in measure.
- (c) Prove that almost everywhere convergence implies convergence in measure on a finite measure space.
- **2.** Let X by a metric space and $\mathcal{C}(X)$ be the set of all continuous and bounded functions with domain X. If $f, g \in \mathcal{C}(X)$ define the distance between these functions by

$$d(f,g) = \sup_{x \in X} |f(x) - g(x)|.$$

- (a) Prove that d is a metric on C.
- (b) Prove that with this definition of distance C(X) is a complete metric space.

3.

- (a) Express the Fourier series generated by x on $[0, 2\pi]$ in the form $\sum c_n \phi_n$ where ϕ_n are orthonormal on the set. Clearly identify the values of c_n and ϕ_n .
- (b) From (a), calculate $\sum_{n=1}^{\infty} 1/n^2$ using Parseval's formula.
- (c) Using the above, find a function defined on $[0, 2\pi]$ whose Fourier series equals $\sum_{n=1}^{\infty} \sin nx/n^3$. Justify your result.

- **4.(i)** Let \mathcal{F} be a σ -field on $\Omega = [0,1]$ such that $\left[\frac{1}{n+1}, \frac{1}{n}\right] \in \mathcal{F}$, for $n = 1, 2, \cdots$. Show that,
 - (a) $\{0\} \in \mathcal{F};$
 - (b) $\{\frac{1}{n} : n = 2, 3, \dots\} \in \mathcal{F};$
 - (c) $(\frac{1}{n}, 1] \in \mathcal{F}$, for all n;
 - (d) $(0, \frac{1}{n}] \in \mathcal{F}$, for all n.
- (ii) A random variable (r.v.) $X \in L_1$ satisfies $E|X| \ge a > 0$ and $EX^2 = 1$. Prove that,

$$P\{ |X| \ge \lambda a \} \ge (1 - \lambda)^2 a^2$$
, for $0 \le \lambda \le 1$.

5.(i) Let (Ω, \mathcal{A}, P) be a probability space. Suppose that $\{A_n \in \mathcal{A} : n \geq 1\}$ are independent events satisfying $P(A_n) < 1$ for all $n \geq 1$. Show that

$$P(\bigcup_{n=1}^{\infty} A_n) = 1$$
 if and only if $P(A_n \text{ i.o. }) = 1$.

(ii) X_n are independent, with

$$P(X_n = n^2) = \frac{1}{n^2}, \quad P(X_n = -1) = 1 - \frac{1}{n^2}, \quad n = 1, 2, \dots$$

Show that, $\lim_{n\to\infty}\sum_{k=1}^n X_k$ exists almost surely, on the extended real line.

6. Prove that, for an arbitrary sequence $\{X_n:n=1,2,\cdots\}$ of r.v.s to obey the 'weak law of large numbers' (WLLN), it is necessary and sufficient that

$$E\left(\frac{Y_n^2}{1+Y_n^2}\right) \to 0$$
, as $n \to \infty$,

where $Y_n := \frac{S_n}{n}$, and $S_n := \sum_{i=1}^n X_i$ are the partial sums.