Ph.D. Qualifying Examination: Distribution Theory, Statistical Inference, Linear Algebra June 14, 2005

1. Let the matrix A be defined as follows:

$$A = \left[\begin{array}{rrr} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{array} \right]$$

- (a) Given that the eigenvector corresponding to the largest eigenvalue of A is of the form $[1, k, 1]^T$, find the exact value of k using the Raleigh Quotient.
- (b) Use the result of part (a) and the Rayleigh Quotient to find the remaining two eigenvalues.
- 2. Prove the following:
 - (a) A Hermitian matrix is positive definite if and only if all of its eigenvalues are positive.
 - (b) Compute e^{Kt} for the skew-hermitian matrix

$$K = \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right].$$

3. Consider the matrix

$$A = \left[\begin{array}{rrr} 1 & 0 & -1 \\ 0 & 2 & 0 \\ 1 & 0 & 3 \end{array} \right]$$

- (a) Find B such that $J = B^{-1}AB$ is in Jordan canonical form.
- (b) Use the result in (a) to find the general solution to the equation x' = Ax with $x(0) = x_0$
- 4. (i) X_1, \dots, X_n are i.i.d. exponentially distributed random variables with mean λ^{-1} . Show that, for $c \geq 0$,

$$P\{\min_{i \neq j, (i.j) \in \{1, \dots, n\}} | X_i - X_j | \ge c\} = \exp\{-\frac{\lambda}{2}n(n-1)c\}.$$

- (ii) From an urn containing a white and b black balls, a certain number of balls are removed one by one at random (without replacement), their colors being unnoted. Let A be the *event* that the next draw of a randomly chosen ball produces a white ball. Find the distribution of the indicator variable 1_A .
- 5. For a "parent" distribution with density / p.m.f. $f(x;\theta)$, satisfying the usual regularity conditions; suppose the likelihood $L := \prod_{i=1}^n f(x_i;\theta)$, based on a random sample (X_1, \dots, X_n) , satisfies

$$\frac{\partial}{\partial \theta} \ln L = k(\theta) (T - g(\theta)), \quad \theta \in \Theta$$

for some statistic $T \equiv T(X_1, \dots, X_n)$, and functions $g(\theta)$ and $k(\theta)$ such that $k(\theta)$ never vanishes. Then,

- a) prove that T is the unique UMVU estimator of $g(\theta)$, whose variance attains the Rao-Cramer lower bound. Why is it unique?
- b) use Rao-Blackwellization to get the same UMVU estimator.
- 6. (i) Suppose X has Cauchy distribution with location parameter $\theta \in (-\infty, \infty)$, with density,

$$f(x) = \frac{1}{\pi \{1 + (x - \theta)^2\}}; -\infty < x < \infty$$

Show that for testing the null hypothesis $H_0: \theta = 0$ vs. the alternative $H_1: \theta = 1$, using a single observation X; the *critical region* $\{1 < X < 3\}$ is the "most powerful" for its *size*. Evaluate the corresponding size and power of this test.

(ii) Consider the Beta (α, β) family of densities

$$f(x; \alpha, \beta) = \text{Constant } x^{\alpha-1} (1-x)^{\beta-1}; \quad 0 < x < 1; \quad \alpha > 0, \ \beta > 0.$$

Suppose (X_1, \dots, X_n) and (Y_1, \dots, Y_m) are random samples from Beta $(\mu, 1)$ and Beta $(\theta, 1)$ distributions respectively. Also assume that the Xs are independent of the Ys.

Show that the Likelihood Ratio (LR) test for $H_0: \theta = \mu$ versus $H_1: \theta \neq \mu$, is based on the statistic

$$T^* := \frac{\sum_i \ln X_i}{\sum_i \ln X_i + \sum_j \ln Y_j}$$

What is the null distribution of T^* ?