1. Let X_1, \ldots, X_n be iid random variables with density

$$f(x;\theta) = \frac{exp\{-(x-\theta)\}}{1 + exp\{-(x-\theta)\}}, -\infty < x < \infty, -\infty < \theta < \infty$$

- (a) Show the existence and uniqueness of maximum likelihood estimator.
- (b) Construct the iterative one-step estimator based on Newton's procedure giving the initial esimator.
- 2. Let X_1, \ldots, X_n be a random sample from the uniform $(0, \theta]$ distribution.
 - (a) Find the complete sufficient statistics for θ and show how to compute the unique minimum variance unbiased estimator of

$$g(\theta) = \frac{e^{t\theta} - 1}{t\theta}, t \neq 0,$$

i.e., the mgf of the distribution.

- (b) Find the close form of the unique minimum variance unbiased estimator of $g(\theta)$.
- 3. (a) Let X be a single observation from the density $f(x; \theta) = (2\theta x + 1 \theta)I_{[0,1]}(x)$, where $-1 \le \theta \le 1$. Find the likelihood ratio test with significance level α of $H_0: \theta = 0$ versus $H_1: \theta = 1$.
 - (b) If X_i , i = 1, ..., n, are observations from the Normal distribution with known variance σ_i^2 , respectively, and $X'_i s$ are mutually independent, construct a test for testing that their means are all equal.