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Part C: Linear Algebra and Numerical Methods Doctoral Qualifying Exam, May 2013

The first three questions are about Linear Algebra and the next three questions are

about Numerical Methods.

1. Let PC(A) denote the orthogonal projection operator onto the column space of matrix A.

(a) Show that

UPC(A) = PC(UA)U

for any real m× n matrix A and unitary m×m matrix U .

(b) Show that PC(A) + PC(B) is a projection if and only if PC(A)PC(B) = 0.

2. Let V ⊂ R3 be the subspace spanned by (4, 1,−2)T . Suppose we define an inner product for

x, y ∈ R3 by

(x, y) = 2x1y1 + 3x2y2 + x3y3.

(a) Find a basis for V ⊥ = {x|(x, y) = 0 ∀y ∈ V }.
(b) Find C and D in the linear fit y(t) = Ct + D that minimizes the weighted squared error

||y(t) − (Ct + D)||2, as defined using the norm induced by the above inner product, for data

y(−1) = −1, y(0) = 0, y(1) = 0.

3. Consider the system of differential equations given by

dx

dt
=


1 0 0 0
1 1 0 0
0 0 −1 0
0 0 1 −1

x.

(a) Find the fundamental solution X(t) satisfying X(0) = I.

(b) Show that if t ≥ 0,

||X(t)|| =
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where ||X|| is the standard matrix (operator) norm

||X|| = max
x 6=0

||Xx||
||x||

and ||x|| is the Euclidean norm of vector x.

4. Explain how Newton’s method can be used to find the solutions to the equation x2 = 2. Write

down the approximate solution after two iterations with initial guess x0 = 1. Show that the

Newton’s iterations converge for any nonzero initial guess.



5. Consider the initial value problem

y′ = f(t, y), y(0) = y0.

One possibility to derive numerical schemes for the initial value problem above is to consider

the following family of k-multistep methods of the form

k−1∑
j=−1

ajyn−j = hfn+1

where the coefficients aj are determined by (1) constructing the polyonomial pk of degree k that

interpolates yn−j at tn−j = (n − j)h for j = −1, . . . , k − 1, (2) evaluating p′k(tn+1) ≈ y(tn+1),

and (3) equating p′k(tn+1) = fn+1.

(a) Show that for k = 1, 2 these methods are given explicitly by

yn+1 − yn = hfn+1

(3yn+1 − 4yn + yn−1)/2 = hfn+1

(1)

(b) What is the order of these methods for k = 1, 2? How about for a general k?

(c) Show that for k = 1 and 2 the methods are stable, and for k = 1 the method is A-stable.

Are the methods convergent in those cases?

6. (a) Consider the inner product

〈f, g〉 =

∫ 1

−1
(x + 1)f(x)g(x)dx

and let Pn be the set of polynomials of degree at most n. Let Q ∈ Pn be a nontrivial polynomial

which is 〈·, ·〉-orthogonal to Pn−1. Construct such a polynomials in terms of the Legendre

polynomials {P0, P1, . . . , Pn, . . .} which are orthogonal in L2(−1, 1]) and normalized such that

Pn(1) = 1 for all n ≥ 0.

(b) Consider the quadrature

I1n(g) =

n∑
i=1

cig(xi) ≈
∫ 1

−1
(x + 1)g(x)dx

where {xi} is the set of zeros of Q and ci are chosen so that I1n is exact for Pn−1. Show that I1n
is, in fact, exact for P2n−1.
(c) Show that there exist coefficients {ai} for i = 0, 1, . . . which make the formula exact for P2n

In(f) = a0f(−1) +
n∑

i=1

aif(xi) ≈
∫ 1

−1
f(x)dx.

Here the nodes xi are given in Part (b). Show that this quadrature is not exact for P2n+1.

(d) For the Gaussian quadrature rule
∫ 1
−1 f(x)dx ≈ Jnf =

∑n
i=1wif(yi), prove that limn→∞ Jnf =∫ 1

−1 f(x)dx for all f ∈ C([−1, 1]).


