Ph.D. Prelim : Exam. C Real Analysis and Statistical Inference

June 3, 2011

1. Prove that if g is of bounded variation on $[0, \delta]$, then

$$\lim_{\alpha \to \infty} \frac{2}{\pi} \int_0^\delta g(t) \frac{\sin \alpha t}{t} \, dt = g(0+).$$

2. Use Holder's Inequality to prove Minkowski's Inequality: If f and h belong to L_p , $p \ge 1$, then f + h belongs to L_p and $||f + h||_p \le ||f||_p + ||h||_p$. **3.** Consider a measure space (X, \mathbf{X}, μ) and a sequence of functions f, defined

3. Consider a measure space (X, \mathbf{X}, μ) and a sequence of functions f_n defined on the space.

- (a) Prove or give a counterexample with explanation: If f_n converges in measure, then it converges almost everywhere.
- (b) Prove or give a counterexample with explanation: If $\mu(X) < \infty$ and if $f_n \to f$ almost everywhere, then $f_n \to f$ in measure.

4. Let $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ and $s^2 := \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$ be the mean and variance respectively, of $n \ge 2$ observations X_1, \dots, X_n which are i.d. (*identically distributed*), but need not be i.i.d., and have a finite fourth moment. Let $\theta_1 := EX_i$ and $\theta_j := E(X_i - \theta_1)^j$, $i = 1, 2, \dots, n; j = 2, 3, 4$ denote the *common* mean and the second, third and fourth central moments.

(i) Show that the sample variance can be expressed as

$$s^{2} = \frac{1}{2n(n-1)} \sum_{i=1}^{n} \sum_{j=1}^{n} (X_{i} - X_{j})^{2}.$$

(ii) By using the random variables $A_i := (X_i - \theta_1); i = 1, 2, \dots, n$, show that,

$$Es^{2} = \theta_{2}$$
, and $var(s^{2}) = \frac{1}{n} \left(\left(\theta_{4} - \theta_{2}^{2}\right)^{2} - \frac{1}{n} \sum_{i \neq j} cov(A_{i}^{2}, A_{j}^{2}) \right)$

- (iii) Compute $\operatorname{cov}(\overline{X}, s^2)$, if it is additionally assumed that all pairs (X_i, X_j) are also jointly identically distributed. Use this to find necessary and sufficient conditions for $\operatorname{cov}(\overline{X}, s^2) = 0$ to hold.
- (iv) If the observations (X_1, X_2, \dots, X_n) described above can be regarded as a random sample from a distribution in L_4 with mean μ and variance σ^2 ; then using (ii), prove that the sample variance is an unbiased and consistent estimator of σ^2 .

5. Based on a random sample X_1, \dots, X_n of size n, from the exponential density $f(x;\theta) = \theta^{-1} \exp\{-x/\theta\}$; x > 0, $\theta > 0$; consider the problem of testing the null hypothesis $H_0: \theta = \theta_0$ vs. the alternatative hypotheses $H_1: \theta \neq \theta_0$, where θ_0 is a fixed value in the parameter space. Answer the following questions.

- (a) Derive the large sample size- α Wald-test, Scores-test and the test based on $(-2 \ln \Lambda)$. For each test, derive the respective *test-statistics* explicitly, and the corresponding critical regions.
- (b) Derive the *exact* likelihood ratio test to show that it rejects H_0 at level of significance α iff,

$$\left\{\frac{2}{\theta_0}\sum_{i=1}^n X_i \le c_1 := \chi^2_{1-\alpha/2}(2n), \text{ or } \ge c_2 := \chi^2_{\alpha/2}(2n)\right\}.$$

(c) Show that the power function of the exact likelihood ratio test in part(b) above, is

$$\gamma(\theta) = 1 - \int_{c_1\frac{\theta_0}{\theta}}^{c_2\frac{\theta_0}{\theta}} \frac{1}{2^n\Gamma(2n)} e^{-(x/2)} x^{n-1} dx.$$

6. Consider a random sample X_1, \dots, X_n of size *n* from the Normal distribution $N(\mu, 1)$, where the mean μ is unknown. The parameter of interest is $g(\mu) := P(X_1 < 0)$.

- (a) Show that the unique UMVU estimator of $g(\mu)$ is $\Phi\left(-\sqrt{\frac{n}{n-1}}\,\overline{X}\right)$.
- (b) What can you say about the difference of the UMVU estimator and the maximum likelihood estimator of $g(\mu)$, as the sample size $n \to \infty$?