Ph.D. Prelim : Exam. A Distribution Theory & Regression Analysis

May 31, 2011

1. Random variables X and Y are independent, both being exponentially distributed with means $EX = \lambda^{-1}$ and $EY = \mu^{-1}$. Instead of observing both X and Y, we can only observe the pair (Z, W), where

$$Z := \min(X, Y), \qquad \text{and} \qquad W := \begin{cases} 1, & \text{if } Z = X \\ 0, & \text{if } Z = Y \end{cases}$$

- (a) Find the joint distribution of (Z, W), by computing P(Z > z, W = i); i = 0, 1.
- (b) Prove that Z and W are statistically independent, by considering the conditional distributions of Z given W.

2. The Cauchy family $\{C(\alpha, \beta) : -\infty < \alpha < \infty, \beta > 0\}$ of absolutely continuous distributions with location and scale parameters α and β respectively, are defined by their density function

$$f(x;\alpha,\beta) := \frac{\beta}{\pi \{1 + \beta^2 (x - \alpha)^2\}}; \quad -\infty < x < \infty, \quad -\infty < \alpha < \infty, \quad \beta > 0.$$

(a) Suppose R is any positive random variable, and Θ is a continuous random variable that is Uniformly distributed on $(0, \pi)$, and is independent of R. Then (R, Θ) can be interpreted as the polar coordinates of a point selected in the upper half plane. If (X, Y) denotes the corresponding Cartesian coordinates, defined via the usual transformation

$$X := R \cos \Theta, \qquad Y := R \sin \Theta;$$

show that the $\frac{X}{Y}$ has the standard Cauchy distribution $\mathcal{C}(0,1)$.

Does the unspecified distribution of R need to be continuous with a density?

(b) Let X, Y be i.i.d. with the standard Normal distribution N(0, 1). Using the transformation

$$U := X, \qquad W = \frac{X}{X+Y};$$

find the density of W, to show that it belongs to the Cauchy family.

3. X_1, X_2, \cdots are i.i.d., distributed Uniformly on (0, 1), and N is an integer valued random variable independent of the sequence $\{X_n : n \ge 1\}$, such that

$$P(N=n) = \frac{c}{n!}, \quad n \ge 1$$

where c is a suitable constant.

(a) Find the p.d.f. of $Z := \min(X_1, \cdots, X_N)$.

(b) Compute EZ by first conditioning on N. Then compute EZ^2 , to show that the coefficient of variation (η) of Z satisfies,

$$\eta^2 := \frac{\operatorname{var} Z}{EZ^2} = \left(\frac{e}{e-2}\right).$$

- 4. This question has three parts.
- (a) Prove the Bonferroni inequality for two events A and B, given by $P(A \cap B) \ge 1 P(A) P(B)$.
- (b) Extend the Bonferroni inequality you proved in part 4(a) to a finite number, say p, of events.
- (c) For first-order normal linear models (usual multiple regression) with p parameters including the Y intercept, use part 4(b) and mathematical arguments to obtain simultaneous confidence intervals for all the parameters with family confidence coefficient $1 - \alpha$.
- 5. This question has two independent parts.
- (a) For the simple linear regression model show that the sample mean \bar{Y} and the slope estimate are independent.
- (b) For normal linear models, derive the weighted least squares estimator of β .
- 6. This question has two independent parts.
- (a) Explain how the odds ratio in logistic regression is connected with the odds ratio in the following 2×2 contingency table.

Response	$x_1 = 0$, Active Drug	$x_1 = 1$, Placebo
y = 0, not infected	n_{00}	n_{01}
y = 1, infected	n_{10}	n_{11}

(b) A multiple regression model is fitted with response y, and predictors x_1 and x_2 . The ANOVA Table and some sums are given below:

	Source of	Sum of	Degrees of	Mean	F_0	p-value	
	Variation	Squares	Freedom	Square			
	Regression	$651,\!996.1$	2	325,983	267.2	4.74E-10	
	Residual	$13,\!421,\!1$	11	1220.1			
	Total	$665,\!387.2$	13				
$\sum_{i=1}^{n} x_{i1} =$	= 3, 125,	$\sum_{i=1}^{n} x_{i2} = 60.$.72, $\sum_{i=1}^{n} z_i$	$x_{i1}^2 = 702,$	205,	$\sum_{i=1}^{n} x_{i2} = 1$	264.258
$\sum_{i=1}^{n} :$	$x_{i1}x_{i2} = 13,50$	63.5, $\sum_{i=1}^{n}$	$\sum_{i=1}^{n} x_{i1} y_i = 3,9$	52,040,	$\sum_{i=1}^{n} x_i$	$x_2y_i = 75,73$	8.3.

Suppose it is of interest to investigate the contribution of x_2 to the original first-order model. Write down the hypotheses you want to test. Use the extra sum of squares approach to show clearly whether or not x_2 contributes significantly to the model.