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1. (a) Let f, g : [a, b] → R be bounded functions. Prove that if both f
and g are Riemann integrable, so is their product fg.

(b) Is the analog of (a) true for Lebesgue integrable functions on sets
of finite measure? In particular, prove that f, g ∈ L1 (E), where
E is a Lebesgue measurable subset of R of finite measure, implies
fg ∈ L1 (E), or produce a counterexample.

2. (a) Consider the Fourier cosine expansion of the function f(x) = π−x
on the interval [0, π] in the usual form

f ∼ a0

2
+

∞∑
n=1

an cosnx.

Determine whether or not the series converges pointwise to f ,
uniformly to f , and if the Fourier series can be differentiated
term-by-term. Explain your answers.

(b) Let X be a separable Hilbert space over R with inner product
〈·, ·〉 and let l2 = l2 (R) be the standard Hilbert space of square-
summable sequences x̂ = (x1, x2, . . . , xk, . . .) with its usual inner
product

〈x̂, ŷ〉0 =
∞∑

n=1

xnyn.

One can use a basic result on the complete orthonormal sets of
X to show that X is equivalent to l2 in a very strong sense.State
and prove this result.

3. (a) Let f : R2 → R be measurable with respect to Lebesgue measure,
and suppose that f ∈ L1

(
R2
)
. Why is the function fy(x) =

f(x, y) in L1 (R) for almost all y ∈ R?
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(b) Suppose in addition that ∂yf(x, y) is defined for all y ∈ R and
there exists g ∈ L1 (R) such that |∂yf(x, y)| ≤ g(x) for all x ∈ R.
Prove that the function defined as

F (y) =
∫

R
f(x, y)dx

is differentiable, and

F ′(y) =
∫

R
∂yf(x, y)dx.

4. Let {Yn : n = 1, 2, · · · } be an arbitrary sequence of r.v.s in Lp, and
let Sn :=

∑n
i=1 Yi denote their partial sums and Xn := Sn

n . Prove
the following conditions for the original sequence Yn to obey the ‘weak
law of large numbers’ (WLLN) with centering constants an ≡ 0 and
norming constants bn = n :

(a) (sufficient condition) As n → ∞, E
(

|Xn|p
1+|Xn|p

)
→ 0, for some

p > 0.

(b) (necessary condition) As n→∞, E
(

|Xn|p
1+|Xn|p

)
→ 0, for all p > 0;

and then
(

|Xn|p
1+|Xn|p

)
P→ 0.

5. (a) Show that Xn
a.s.−→ X implies Xn ⇒ X. (⇒ denotes convergence

in distribution).

(b) Show that Xn
a.s.−→ X if and only if P (|Xn −X| ≥ ε, i.o. ) = 0,

for all ε > 0.

6. Suppose {Xn, n ≥ 1} are i.i.d. with N(0, 1) (standard Normal) as the
common distribution. Using the fact that for any r.v. Z distributed
as N(0, 1), we have P (Z > x) ∼ φ(x)/x, in the sense that

lim
x→∞

P (Z > x)
φ(x)/x

= 1,

(where φ(x) is the standard Normal density function); show that,

P

(
lim sup

n→∞

|Xn|√
lnn

=
√

2
)

= 1.

2


