PhD Program in Applied Probability and Statistics Qualifying Exam B: Linear Algebra, Distributions and Statistical Inference

May 28, 2010

1. Let θ be real and $a = \cos \theta$ and $b = \sin \theta$. Let

$$A = \left(\begin{array}{cc} ab & b^2 \\ -a^2 & -ab \end{array}\right).$$

- (a) Find the four fundamental subspaces (column space, nullspace, row space, left nullspace) of A.
- (b) Diagonalize A if possible.
- (c) Find the singular value decomposition of A if possible.
- 2. (a) Suppose $\lambda \neq \mu$ and let

$$A = \left(egin{array}{cc} \lambda & 0 \\ 0 & \mu \end{array}
ight) \quad ext{and} \quad X_0 = \left(egin{array}{cc} a & b \\ c & d \end{array}
ight).$$

Define a sequence of 2×2 matrices for $\ell = 1, 2, 3, \ldots$ by

$$X_{\ell} = A X_{\ell-1} - X_{\ell-1} A.$$

Find values α and β and 2×2 matrices H and K such that

$$X_{\ell} = \alpha^{\ell} H + \beta^{\ell} K$$

for $\ell = 1, 2, \dots$ Is this formula valid for $\ell = 0$? Why or why not?

(b) Let B be a general diagonalizable 2×2 matrix, define the linear mapping L from the set of 2×2 matrices to the set of 2×2 matrices by

$$L(X) = BX - XB.$$

Find an inner product on the vector space of 2×2 matrices for which L is selfadjoint.

3. Let A and B be $n \times n$ matrices. Suppose that the sequence $\mathbf{x}_{\ell} \in \mathbf{R}^n - \{\mathbf{0}\}$ for $\ell = 0, 1, 2, \ldots$ satisfies

$$A\mathbf{x}_{\ell} = 0$$
 and $B\mathbf{x}_{\ell+1} = \mathbf{x}_{\ell}$.

Furthermore, suppose that

$$\lim_{\ell\to\infty}\mathbf{x}_\ell = \mathbf{0}.$$

Finally, suppose that the intersection of the null space (kernel) of A and the column space (range) of B is a one dimensional subspace of \mathbf{R}^n having a basis containing a single vector \mathbf{d} .

- (a) Show that \mathbf{d} is an eigenvector of A. What is the eigenvalue?
- (b) Show that \mathbf{d} is an eigenvector of B and that the magnitude of the corresponding eigenvalue is greater than one.
- 4. Using a random sample $X_1, ..., X_n$ from a binomial $(k, \theta), 0 < \theta < 1, k$ is a fixed positive integer, $n \ge 2$ compute the minimum variance unbiased estimator (MVUE) of $g(\theta) \equiv P(X_1 \ge 1)$. Is the MVUE unique? Explain.
- 5. Let X and Y have the joint probability mass function

$$p(x,y) = \frac{e^{-2}}{x!(y-x)!}, y = 0, 1, \dots; x = 0, 1, \dots, y,$$

zero elsewhere. Find the moment generating function of X and Y. Also, compute the correlation coefficient of X and Y.

6. Let $X_1, ..., X_n$ and $Y_1, ..., Y_m$ be independent random samples from two normal distributions $N(0, \theta_1)$ and $N(0, \theta_2)$. Find the likelihood ratio test for testing the composite hypothesis $H_o: \theta_1 = \theta_2$ against the composite alternative $H_1: \theta_1 \neq \theta_2$. Derive an exact (not asymptotic) size α test based on the likelihood ratio test. Show work.