PhD Program in Applied Mathematics Qualifying Exam B: Linear Algebra and Numerical Methods

May 28, 2010

1. Let θ be real and $a = \cos \theta$ and $b = \sin \theta$. Let

$$A = \left(\begin{array}{cc} ab & b^2 \\ -a^2 & -ab \end{array}\right).$$

- (a) Find the four fundamental subspaces (column space, nullspace, row space, left nullspace) of A.
- (b) Diagonalize A if possible.
- (c) Find the singular value decomposition of A if possible.
- 2. (a) Suppose $\lambda \neq \mu$ and let

$$A = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$$
 and $X_0 = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Define a sequence of 2×2 matrices for $\ell = 1, 2, 3, \ldots$ by

$$X_{\ell} = A X_{\ell-1} - X_{\ell-1} A.$$

Find values α and β and 2×2 matrices H and K such that

$$X_{\ell} = \alpha^{\ell} H + \beta^{\ell} K$$

for $\ell = 1, 2, \dots$ Is this formula valid for $\ell = 0$? Why or why not?

(b) Let B be a general diagonalizable 2×2 matrix, define the linear mapping L from the set of 2×2 matrices to the set of 2×2 matrices by

$$L(X) = BX - XB.$$

Find an inner product on the vector space of 2×2 matrices for which L is selfadjoint.

3. Let A and B be $n \times n$ matrices. Suppose that the sequence $\mathbf{x}_{\ell} \in \mathbf{R}^n - \{\mathbf{0}\}$ for $\ell = 0, 1, 2, \ldots$ satisfies

$$A\mathbf{x}_{\ell} = 0$$
 and $B\mathbf{x}_{\ell+1} = \mathbf{x}_{\ell}$.

Furthermore, suppose that

$$\lim_{\ell\to\infty}\mathbf{x}_\ell = \mathbf{0}.$$

Finally, suppose that the intersection of the null space (kernel) of A and the column space (range) of B is a one dimensional subspace of \mathbf{R}^n having a basis containing a single vector \mathbf{d} .

- (a) Show that **d** is an eigenvector of A. What is the eigenvalue?
- (b) Show that \mathbf{d} is an eigenvector of B and that the magnitude of the corresponding eigenvalue is greater than one.
- 4. The Secant method for the rootfinding problem f(x) = 0 is based on the linear approximation for the given function f.
 - (a) Derive the general iteration formula connecting x_{n+1} with x_n and x_{n-1} for the Secant method.
 - (b) Suppose that α is the root of f, i.e., $f(\alpha) = 0$. Prove the error formula

$$\alpha - x_{n+1} = -(\alpha - x_n)(\alpha - x_{n-1}) \cdot \frac{f''(\xi)}{2f'(\eta)},$$
(1)

with η between x_{n-1} and x_n , ξ between x_{n-1} , x_n , and α .

- 5. (a) Find the first three (unnormalized) orthogonal polynomials with respect to the weight function w(x) = x on the interval [0, 1].
 - (b) Calculate the coefficients w_0 , w_1 , x_0 , and x_1 that make the approximation

$$\int_0^1 x f(x) dx = w_0 f(x_0) + w_1 f(x_1)$$

exact when f is any cubic polynomial.

6. (a) Consider solving y' = f(x, y) via the scheme

$$y_{n+1} = \frac{18}{11}y_n - \frac{9}{11}y_{n-1} + \frac{2}{11}y_{n-2} + h\frac{6}{11}f(x_{n+1}, y_{n+1})$$

Determine its order, stability, and convergence property.

(b) Consider the following scheme:

$$y_{n+1} = y_n + hf(t_{n+1}, y_{n+1})$$

Find its region of absolute stability. Is it A-stable? Explain.