Doctoral Qualifying Exam: Linear Algebra, Probability Distributions and Statistical Inference

May 29, 2009

Problem 1.

(a) Find the set of all 2×2 singular matrices A such that

$$(x \quad y) A \begin{pmatrix} x \\ y \end{pmatrix} = 3x^2 + 4xy + y^2.$$

(b) Let n be a positive integer. Find the sum of all $n \times n$ permutation matrices.

Problem 2. Let $A = U\Sigma V^T$ where

Note that U and V are orthogonal and differ only by an exchange of the second and third column.

- (a) Find an orthonormal basis for each of the four fundamental subspaces of A (the null space, the column space, the row space and the left null space).
- (b) Find the largest eigenvalue and corresponding eigenvector of A.

Problem 3. Consider the initial value problem for the unkown functions u(t) and v(t):

$$\frac{du}{dt} + 7u - 15v = 0$$
$$\frac{dv}{dt} + 2u - 4v = 0$$
$$u(0) = u_0 \qquad v(0) = v_0$$

Find explicit formulas for u(t) and v(t).

Problem 4. Let (X_1, X_2, \dots, X_n) be a random sample of size *n* from an exponential distribution with mean $\theta > 0$.

(a) Using the asymptotic normality of the maximum likelihood estimator (mle) of θ , show that

$$\left(\frac{\overline{X}}{1+\frac{a}{\sqrt{n}}\overline{z}_{\mathcal{H}_{1/2}}}, \frac{\overline{X}}{1-\frac{a}{\sqrt{n}}}\right)_{1/2}$$

is a $100(1-\alpha)\%$ large sample confidence interval for the mean θ .

 $(a := z_{\alpha/2} \text{ is the upper } 100(\frac{\alpha}{2})\% \text{ percentage point of a standard Normal r.v.})$

(b) Find an *exact* likelihood ratio test of size α for testing the null hypothesis H_0 : $\theta = \theta_0$ vs. the alternatives H_1 : $\theta \neq \theta_0$.

Problem 5. Let X be a single observation from the following discrete distribution with probability mass function (p.m.f.)

$$f(x,\theta) = \left(\frac{\theta}{2}\right)^{|x|} (1-\theta)^{1-|x|}; \quad x = -1, 0, 1; \quad 0 \le \theta \le 1.$$

- (a) Based on the single observation X, find a corresponding sufficient statistic T(X) and the mle of θ .
- (b) Let U be the estimator

$$U(X) = \begin{cases} 2, & \text{if } X = 1\\ 0, & \text{otherwise} \end{cases}$$

Show U is an unbiased estimator of θ . Use Rao-Blackwell theorem to construct an improved unbiased estimator with a smaller variance.

(c) Show that the distribution of the sufficient statistic T(X) is complete, but the distribution $f(x,\theta)$ of X is not. Does this fact imply that the improved estimator constructed in (b) is the unique UMVU estimator of θ ?

Problem 6. Let U_i ; $i = 1, 2, \dots$; be i.i.d., uniformly distributed on (0, 1). Set

$$X_0 = 1,$$

$$X_n = \prod_{i=1}^n U_i, \quad n \ge 1$$

- (a) Show that the conditional distribution of X_n given X_{n-1} is uniform on (0, X_{n-1}) for all n ≥ 1.
 (b) Use (a) to show, by induction, that the moments of X_n are

$$E(X_n^k) = \left(\frac{1}{k+1}\right)^n; \quad n = 0, 1, 2, \cdots; \quad k = 0, 1, 2, \cdots,$$

by first conditioning on X_{n-1} .