Part B: Real and Complex Analysis

DOCTORAL QUALIFYING EXAM, JANUARY 2013

The first three questions are about Real Analysis and the next three questions are about Complex Analysis.

- 1. Assume that $f_n \to f$ uniformly on a set S. If each f_n is continuous at a point c in S, then prove that f is also continuous at c.
- 2. Suppose $g \in L(a, \delta)$ for every $a \in (0, \delta)$. Further assume there exists positive constants M and p such that $|g(t) g(0+)| < Mt^p$, for every $t \in (0, \delta]$ and that g(0+) exists.
 - (a) Prove that the Lebesgue integral $\int_0^{\delta} |g(t) g(0+)|/t \, dt$ exists.
 - (b) Prove that the

$$\lim_{\alpha \to \infty} \frac{2}{\pi} \int_0^{\delta} g(t) \frac{\sin \alpha t}{t} \, dt = g(0+).$$

3. Consider the function

$$F(y) = \int_0^\infty e^{-xy} \frac{\sin x}{x} \, dx$$

F(y) is continuous on $(0, \infty)$. Consider an increasing sequence $\{y_n\}$ such that $y_n \ge 1, y_n \to \infty$ as $n \to \infty$. Prove that $F(y_n) \to 0$ as $n \to \infty$ and then use the continuity of F to prove $F(y) \to 0$ as $y \to \infty$.

- 4. Let G be a bounded region and suppose f is continuous on \overline{G} (the closure of G) and analytic on G. Show that if there is a constant $c \ge 0$ such that |f(z)| = c for all z on the boundary of G then either f is a constant function or f has a zero in G.
- 5. Let f be an entire function and let a, $b \in \mathbb{C}$ be distinct and such that |a| < R and |b| < R. If $\gamma(t) = Re^{it}$, $0 \le t \le 2\pi$, evaluate $\int_{\gamma} [(z-a)(z-b)]^{-1} f(z) dz$. Use this result to give another proof of Liouville's theorem.
- 6. Use complex variables to calculate the following integrals, justifying all steps:
 - (a) $\int_0^\infty \frac{x^{-c}}{1+x} \, dx$ for 0 < c < 1.
 - (b) $\int_0^{2\pi} \log \sin^2 2\theta \ d\theta = 4 \int_0^{\pi} \log \sin \theta \ d\theta.$