
Doctoral Qualifying Exam: Real and Complex Analysis

January 11, 2010

Problem 1

Consider the sequence {fn} of even, Lebesgue-measurable functions fn : R → R defined for
each positive integer n and x ≥ 0 as

fn(x) :=


1, x ∈

⋃∞

k=1
Ek,n

0, x /∈
⋃∞

k=1
Ek,n

,

where Ek,n := {x ∈ R : k − 1
2n −

1
4nk ≤ x ≤ k − 1

2n}. Determine whether or not each of
the following is true, explaining your answer in each case: (i) {fn} converges uniformly on
R; (ii) {fn} converges in the L1 (R) norm; (iii) {fn} converges almost uniformly on R; (iv)
{fn} converges in (Lebesgue) measure on R; and (v) {fn} converges almost everywhere on
R.

Problem 2

Consider the integral equation

ϕ(x) = 1 +
∫ ∞

0
exp [− (x + 2) tϕ(t)] dt, (1)

where ϕ ∈ X := BC ([0,∞)) := {ϕ : [0,∞) → R : ϕ is bounded and continuous} and R
denotes the real numbers. Verify the following:

(a) A solution of (1) must satisfy 1 ≤ ϕ(x) ≤ 3/2 for all x ∈ [0,∞).

(b) ϕ(x) → 1 as x →∞ for any solution of (1).

(c) Equation (1) has a unique solution in X.

Also show how one can approximate the solution, and find at least one such approximation.

Problem 3

Prove the Riemann-Lebesgue type result that if f ∈ L1 (R), then

lim
λ→∞

∫ ∞

−∞
f(t)e−λt2dt = 0.

Problem 4

(a) By integrating a suitable complex function around a large sector of angle π/4 in the
complex z-plane, show that∫ ∞

0
cos(x2) dx =

∫ ∞

0
sin(x2) dx =

√
π/8.



(These integrals exist only as improper integrals.)
You may assume that ∫ ∞

0
e−t2 dt =

√
π/2

(b) Use complex contour integration of a suitably-defined multifunction to prove that∫ ∞

0

xa−1 dx

1 + x
= πcosecπa, 0 < a < 1.

Problem 5

Let the function f(z), with Taylor series f(z) =
∑∞

n=0 cnzn, be analytic on B(0;R), R > 0.

(a) Prove that
1
2π

∫ 2π

0
|f(reiθ)|2 dθ =

∞∑
n=0

|cn|2r2n, 0 ≤ r < R.

HINT: You will need to justify interchanges of summation and integration.
(b) Suppose that f is analytic and bounded on C. Use (a) to deduce that f is constant.

Problem 6

The Identity Theorem states that if a function f is analytic on a region D, and if the set of
zeros of f on D has a limit point in D, then the function f must be identically zero on D.
Let {zn} be a sequence of distinct points in B(0; 1) such that zn → 0 as n → ∞. Decide
whether statements (a)–(c) are true or false, for all choices of {zn}:
(a) If f is analytic on B(0; 1) and f(zn) = sin zn for all n, then f(z) = sin z for all z ∈ B(0; 1).
(b) There exists f analytic on B(0; 1) such that f(zn) = n for all n.
(c) There exists f analytic on B(0; 1) such that

f(zn) =
{

0 n even
zn n odd.

Demonstrate the importance of the theorem’s requirement that the limit point of zeros
lie in the function’s domain of analyticity by considering possible functions f such that
f(zn) = sin(1/zn) for all n (for some sequence with zn → 0 as n → ∞) and showing that
f(z)− sin(1/z) does not have to be identically zero in this case.


