Doctoral Qualifying Exam : Real Analysis and Probability Wednesday January 16, 2008

1. Consider a probability space (Ω, \mathcal{A}, P) , and a sequence of events $\{A_n; n \geq 1\}$ therein.

(a) Prove the following version of the second Borel-Cantelli Lemma, which states : if the events A_n are *pairwise independent* and $\sum_{n=1}^{\infty} P(A_n) = \infty$, then we must have $P(A_n \text{ i.o. }) = 1$.

(b) Suppose there exists events $B \in \mathcal{A}$ and $C \in \mathcal{A}$ such that P(B) = P(C), and $B \subset A_n \subset C$ for all $n \geq N$ for some $N \in \{1, 2, 3, \dots\}$. Prove that $P(A_n)$ converges as $n \to \infty$, and that

$$\lim_{n \to \infty} P(A_n) = P(B) = P(C).$$

2. Suppose $Z \in L^1$ is a random variable with EZ < 0, such that its moment generating function $E(e^{sZ}) := M_Z(s) < \infty$ for all $s \in (-a, b)$ for some a > 0 and b > 0. Prove that

$$P(Z \ge 0) \le \rho := \inf_{0 < s < b} M_Z(s),$$

and further that $\rho \in (0, 1)$.

3. (a) For random variables {X_n; n ≥ 1} and X defined on a common probability space, prove : X_n → X ⇒ there exists a subsequence n_k → ∞ such that X_{n_k} → X.
(b) Let Z be a random variable with a standard Normal distribution, and let X_n := (-1)ⁿZ

(b) Let Z be a random variable with a standard Normal distribution, and let $X_n := (-1)^n Z$ for $n \ge 1$. Examine whether X_n converges a) in distribution ? b) in probability ? c) almost surely ?

4. Suppose that $s_n : [0, 2\pi] \to \mathbf{R}$ is a monotonically increasing step function for n = 1, 2, ... and that the sequence $s_1(x), s_2(x), ...$ is monotonically increasing; that is,

$$x \ge y \quad \Rightarrow \quad s_n(x) \ge s_n(y)$$

and

$$n \ge m \quad \Rightarrow \quad s_n(x) \ge s_m(x),$$

Show that if s_n converges almost everywhere to a continuous function f on $[0, 2\pi]$ then s_n converges to f everywhere on $(0, 2\pi)$.

5. Suppose that $F \in L(\mathbf{R})$ and $f_n \in L(\mathbf{R})$ such that $|f_n| \leq F$ almost everywhere for $n \in \mathbf{N}$. Moreover, suppose that $|f_n(x)|$ converges to a function f(x) almost everywhere. Define

$$\varphi_n(x) = \int_{-\infty}^{\infty} f_n(\xi) e^{-ix\xi} d\xi$$
$$\varphi(x) = \int_{-\infty}^{\infty} f(\xi) e^{-ix\xi} d\xi.$$

and

$$\int_{-\infty} J(\mathbf{x})$$

- (a) Prove φ is continuous.
- (b) Prove that φ_n converges to φ uniformly.

6. Determine which of the following functions are Lebesgue integrable over \mathbf{R} . Explain your determination.

Note: χ_S denotes the characteristic (or indicator) function of the set S.

(a)
$$f(x) = \frac{\sin^2 x}{x^2 - \pi^2}$$
 (b) $f(x) = \sum_{n=1}^{\infty} (-1)^n \chi_{[n,n+1/n^2]}(x)$
(c) $f(x) = \frac{x^2}{1 + x^2} \chi_{\mathbf{Q}}(x)$ (d) $f(x) = \frac{\sin^2 x}{1 + x^2 \sin^2 x}$