Ph.D. Qualifying Exam: Real Analysis and Probability - January 2005

1. Suppose $\{X_1, X_2, \dots\}$ is a sequence of independent random variables. Show that,

$$\sup_{n} X_{n} < \infty \text{ a.s. } \iff \sum_{n=1}^{\infty} P(X_{n} > A) < \infty, \text{ for some } A$$

2. (i) Show that

$$d(X,Y) := E\left(\frac{|X - Y|}{1 + |X - Y|}\right)$$

defines a metric on the set of all random variables on the Borel real line, and that $d(X_n, X) \to 0$ as $n \to \infty$ if and only if $X_n \stackrel{P}{\to} X$.

(ii) Show that distance d(X,Y) in (i) above in fact defines a metric space (\mathcal{X},d) , where r.v.s are identified up to a.s. equivalence, by proving,

$$d(X, Y) = 0$$
 if and only if $X = Y$ a.s.

- 3. (i) State the (sub)martingale convergence theorem. Deduce the almost sure convergence of non-negative supermartingales, as a consequence.
 - (ii) An urn contains r red and g green balls. Balls are drawn randomly one at a time from the urn according to the following scheme. Each time we draw a ball; we note its color, replace it back and add c more balls of the same color to the urn before the next draw. Let X_n denote the fraction of green ball after n draws. (X_0 denotes the fraction of greens before the first draw.)
 - a) Prove that $\{X_n : n = 0, 1, 2, \dots\}$ is a martingale.
 - b) Find the probability that the *n*-th ball drawn is green.
 - c) Prove that X_n converges a.s. to some X_{∞} . Can you say that X_n converges in distribution to X_{∞} ? Justify your answer.
- 4. Assume that $f_n \to f$ uniformly on a set S. If each f_n is continuous at a point c in S, then prove that f is also continuous at c.

- 5. Establish the validity of the following formulas:

(a)
$$x = 2\sum_{n=1}^{\infty} \frac{(-1)^{n-1} \sin nx}{n}$$
 if $-\pi < x < \pi$.
(b) $x^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{(-1)^n \cos nx}{n^2}$ if $-\pi \le x \le \pi$.

Be sure to justify convergence.

- 6. (a) Give an example of a sequence of functions f_n which converge pointwise to 0, but do not converge in $L_p(\mathbf{R}, \mathbf{B}, \lambda)$ for any $p \geq 1$.
 - (b) Let (X, \mathbf{X}, μ) be a measure space. Suppose $f_n \to f$ almost everywhere where $f_n \in L_p$ and f is measurable. Prove that if there exist $g \in L_p$ such that $|f_n| \leq g$ for all n and x, then $f \in L_p$ and $f_n \to f$ in L_p .