Ph.D. Qualifying Exam: Linear Algebra, Distribution Theory and Statistical Inference - January 2005

1. (i) Suppose random variables X and Y have a joint distribution such that E(Y|X) = X. Show that, we must then have,

$$cov(X, Y) = var X$$
, and $var Y \ge 1$.

(ii) Suppose $X \sim \text{Uniform } (0,1)$. Let a and b be arbitray fixed constants satisfying 0 < a < b < 1. Consider the random variables,

$$Y:=1_{\{0< X< b\}}, \quad \text{ and } Z:=1_{\{a< X< 1\}}.$$

- a) Y ans Z statistically independent? Justify your answer.
- b) Are there value(s) of a, b in [0,1], for which Y and Z are independent?
- 2. (i) Let X_1, X_2, \dots, X_n be a random sample of size $n \geq 2$ from a Normal distribution $N(\mu, \sigma^2)$. Let,

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}, \quad s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

be the sample mean and sample variance. Using moment generating functions, prove that

$$\frac{(n-1)s^2}{\sigma^2} \sim \chi_{n-1}^2.$$

(**Notation.** \sim means "distributed as". χ_k^2 denotes a chi-square variable, with k "degrees of freedom".)

(You may use: (i) the additive property of chi-squares, (ii) $Z \sim N(0,1) \Longrightarrow \chi_1^2$, and (iii) independence of the sample mean and sample variance, when observations are from a Normal parent distribution.)

(ii) Consider an exponential distribution (with a location parameter $\theta \in (-\infty, \infty)$, and scale parameter $\tau > 0$) having a density

$$f(x) = \begin{cases} \tau^{-1} \exp\{-(x-\theta)/\tau\}, & \text{if } x > \theta \\ 0, & \text{otherwise} \end{cases}$$

Based on a random sample X_1, X_2, \dots, X_n of size $n \geq 2$ from this distribution, find a minimal sufficient statistic for (θ, τ) .

- 3. (i) Consider the exponential distribution in Problem 2(ii) above, with $\tau = 1$. Based on a random sample of size n, find the MLE and the UMVU estimators of the location parameter θ . Compare the two estimators for unbiasedness, variance and consistency.
 - (ii) Consider a continuous distribution whose true density is f(x); $x \in (-\infty, \infty)$. For the problem of testing

$$H_0: f(x) = \pi^{-1/2} \exp(-x^2),$$

versus

$$H_1: f(x) = \pi^{-1}(1+x^2)^{-1};$$

construct the most powerful (MP) size- α critical region, based on a single random sample X, and compute the corresponding power.

4. (a) Let D be the differential operator on polynomials $\phi(\omega) = \alpha_0 + \alpha_1 \omega + \alpha_2 \omega^2 + \alpha_3 \omega^3 + \alpha_4 \omega^4$ of degree ≤ 4 . Thus $D\phi(\omega) = \alpha_1 + 2\alpha_2 \omega + 3\alpha_3 \omega^2 + 4\alpha_4 \omega^3$. Show that D is a linear operator:

$$D\left(\alpha\phi(\omega) + \beta\psi(\omega)\right) = \alpha D\phi(\omega) + \beta D\psi(\omega)$$

Given the isomorphism:

$$\alpha_0 + \alpha_1 \omega + \ldots + \alpha_4 \omega^4 \sim col(\alpha_0, \alpha_1, \ldots, \alpha_4)$$

find a matrix representation of D.

- (b) Let L be the space of vectors made up of real-valued functions $\phi(t)$ at times $t = 0, \pm 1/3, \pm 2/3, \ldots$ satisfying the condition of periodicity $\phi(t+1) = \phi(t)$. What is the dimension of L?
- 5. Let

$$M = \left[egin{array}{cc} 3 & -2 \\ -2 & 6 \end{array}
ight], \quad K = \left[egin{array}{cc} 39 & 2 \\ 2 & 36 \end{array}
ight].$$

Solve the generalized eigenvalue problem $Kv^j = \lambda_j Mv^j$ (j = 1, 2), and find the matrix C such that $C^*MC = I$ and $C^*KC = diag(\lambda_1, \lambda_2)$. Given initial vectors x(0) and x'(0), show how the above results can be used to solve the initial-value problem:

$$Mx''(t) + Kx(t) = 0$$

- 6. (a) Write down the canonical Jordan matrix having eigenvalues $\lambda = 2, 2, 1, 3, 3$, one independent eigenvector for $\lambda = 2$, and two independent eigenvectors for $\lambda = 3$.
 - (b) Consider the matrix $D = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$ with eigenvectors u^1, u^2, \dots, u^n . If $A = CDC^{-1}$ for some nonsingular matrix C, how are the eigenvalues $\mu_1, \mu_2, \dots, \mu_n$ and eigenvectors v^1, v^2, \dots, v^n of A related to those of D?