Ph.D. Prelim: Exam B

Statistical Inference

May, 2024

1. Let X_1, \ldots, X_n be independent identically distributed random variables with pdf (probability density function)

$$f(x) = \frac{1}{\lambda} \exp(-\frac{x}{\lambda})$$

where x and λ are both positive. Find the uniformly minimum variance unbiased estimator (UMVUE) of λ^2 .

- 2. Suppose that X_1, \ldots, X_n are iid Bernoulli(p) where $n \ge 2$ and 0 is the unknown parameter.
 - (a) Derive the UMVUE of p(1-p) and show that it is a consistent estimator.
 - (b) Find the Cramer-Rao lower bound for estimating p(1-p).
- 3. Let X_1, \ldots, X_n be independent identically distributed random variables from a distribution with pdf

$$f(x) = \frac{2}{\sigma\sqrt{2\pi}} \frac{1}{x} \exp\left(\frac{-[\log(x)]^2}{2\sigma^2}\right)$$

where $\sigma > 0$ and $x \ge 1$.

- (a) What is the UMP (uniformly most powerful) level α test for $H_0: \sigma = 1$ vs. $H_1: \sigma = 2$?
- (b) Find the UMP (uniformly most powerful) level α test for $H_0: \sigma = 1$ vs. $H_1: \sigma > 1$ and derive the critical value of the test.