Ph.D. Qualifying Exam B

Statistical Inference

May 22, 2023

- 1. (20 points) Suppose that Y_1, \ldots, Y_n is a random sample from a Bernoulli distribution with success probability p. Let $\tau(p) = p(1-p)$. Find the MVUE of $\tau(p)$.
- 2. (20 points) Let Y_1, \ldots, Y_n be a random sample from a population with density function

$$f(y;\theta) = \begin{cases} \theta y^{\theta-1}, & \text{if } 0 \le y \le 1, \theta > 0, \\ 0, & \text{elsewhere.} \end{cases}$$

- (a) Find a uniformly most powerful test of size α for testing H₀: θ = 1 against H₁: θ > 1.
 Specify your best critical region in terms of a test statistic whose null distribution is clearly identifiable. Justify why the test is uniformly most powerful for all alternatives θ > 1.
- (b) Use part (2a) to find a uniformly most powerful, size $\alpha = 0.05$, test when n = 1.
- 3. (20 points) Let X have a Poisson distribution with parameter θ . Define T = I(X = 0), where I(X = 0) = 1 if X = 0 and is 0 otherwise.
 - (a) Find the Rao–Cramér lower bound for (estimating the variance of) T and show that it is strictly less than the variance of T.
 - (b) Show that T is an MVUE of its expectation.