Ph.D. Qualifying Exam B

Statistical Inference

May 22, 2023

1. (20 points) Suppose that Y_{1}, \ldots, Y_{n} is a random sample from a Bernoulli distribution with success probability p. Let $\tau(p)=p(1-p)$. Find the MVUE of $\tau(p)$.
2. (20 points) Let Y_{1}, \ldots, Y_{n} be a random sample from a population with density function

$$
f(y ; \theta)= \begin{cases}\theta y^{\theta-1}, & \text { if } 0 \leq y \leq 1, \theta>0 \\ 0, & \text { elsewhere }\end{cases}
$$

(a) Find a uniformly most powerful test of size α for testing $H_{0}: \theta=1$ against $H_{1}: \theta>1$. Specify your best critical region in terms of a test statistic whose null distribution is clearly identifiable. Justify why the test is uniformly most powerful for all alternatives $\theta>1$.
(b) Use part (2a) to find a uniformly most powerful, size $\alpha=0.05$, test when $n=1$.
3. (20 points) Let X have a Poisson distribution with parameter θ. Define $T=I(X=0)$, where $I(X=0)=1$ if $X=0$ and is 0 otherwise.
(a) Find the Rao-Cramér lower bound for (estimating the variance of) T and show that it is strictly less than the variance of T.
(b) Show that T is an MVUE of its expectation.

