Doctoral qualifying exam questions on Math 651 for January 2023

1. (a) Find the general solution of the 2D linear system

$$
\binom{\dot{x}}{\dot{y}}=\left(\begin{array}{cc}
-2 & 1 \\
1 & -2
\end{array}\right)\binom{x}{y} .
$$

Sketch the direction field and describe the type (e.g., saddle, etc.) of the equilibrium point at the origin.
(b) Find the general solution of the homogeneous differential equation

$$
L(y) \equiv 2 x^{2} y^{\prime \prime}+x y^{\prime}-3 y=0 .
$$

Then: (i) find the solution of the initial value problem with $y(1)=1$ and $y^{\prime}(1)=4$. (ii) Find the inhomogeneous solution of the corresponding inhomogeneous equation $L(y)=1+x$.
(c) Show that $y=x$ is a solution of the differential equation

$$
x^{2} y^{\prime \prime}-x(x+3) y^{\prime}+(x+3) y=0,
$$

then use reduction of order to find a second linearly independent solution.
2. (a) Find and classify, as regular or irregular, all singular points in the finite part of the complex plane for the ODE

$$
x(x-1)^{2} y^{\prime \prime}+(x-2) y^{\prime}+(x-2) y=0 .
$$

What is the leading (or dominant, one-term) behavior of the two linearly independent solutions of the ODE as $x \rightarrow 0$?
(b) Explain why the point $x=0$ is an ordinary point of the ODE

$$
\left(1+x^{2}\right) y^{\prime \prime}-4 x y^{\prime}+6 y=0 .
$$

Look for power series solutions about $x=0$ of the form $y=\sum_{n=0}^{\infty} a_{n} x^{n}$. Find the recurrence relation for the coefficients $\left\{a_{n}\right\}$, and find the first three non-zero terms of two linearly independent solutions (unless the series terminate sooner).
3. Consider the problem for the diffusion equation

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\sin \left(\frac{\pi x}{L}\right) e^{-t} \quad x \in(0, L) t>0 \\
& u(0, t)=c_{1}, \quad u(L, t)=c_{2}, \quad u(x, 0)=f(x)
\end{aligned}
$$

where c_{1} and c_{2} are nonzero constants.
(a) Put $u(x, t)=u_{e}(x)+v(x, t)$ where $u_{e}(x)$ is a steady, large-time $(t \rightarrow \infty)$ or equilibrium solution and $v(x, t)$ is time-dependent or transient. Write down the problems that determine $u_{e}(x)$ and $v(x, t)$, and find the solution of the problem for the steady component $u_{e}(x)$.
(b) Find the eigenvalue problem for a separable solution $v(x, t)=X(x) T(t)$, and write down the eigenvalues and eigenfunctions $\left(\lambda_{n}, X_{n}(x)\right)$. Now look for a solution of the form $v(x, t)=\sum_{n}^{\infty} a_{n}(t) X_{n}(t)$, and find the problem that determines $\left\{a_{n}(t)\right\}$. Find the solution of this problem for $\left\{a_{n}(t)\right\}$. Find the leading nonzero or dominant behavior of $v(x, t)$ as it tends to zero when $t \rightarrow \infty$. Explain how this can change with L.

