Applied math written qualifying exam, Jan 2023

January 8, 2023

1. Consider the following random walk. At $t=(n-1) \Delta t$ a particle is located at $x=m \Delta x$. At $t=n \Delta t$ the particle moves to $x=(m+1) \Delta x$ with probability p_{r}, to $x=(m-1) \Delta x$ with probability p_{l}, and it will vanish (be irreversibly lost from the system) with probability p_{s}. Let $w(m, n)$ denote the probability the particle is at $x=m \Delta x$ at time $t=n \Delta t$.
(a) Draw a grid indicating the achievable positions a particle can reach at time $t=n \Delta t$, for $n=0, \ldots, 3$. Determine the probability for all the achievable positions in the grid.
(b) What are the values of A and B such that $w(m, n)=A w(m-1, n-1)+B w(m+1, n-1)$?
(c) Set $p_{r}=p_{l}=p$ and $u(x, t)=w(m, n)$ and derive a PDE for u, assuming $\Delta x, \Delta t$ are small. In doing this, assume the probability of loss is small, i.e., $p_{s}=p_{0} \Delta t$. Also, set $D=\Delta x^{2} / \Delta t$.
(d) Write an expression for the probability the particle disappears by $T=n \Delta t$ (as $\Delta t \rightarrow 0$ with T fixed) in terms of p_{0} and T. Hint: The probability the particle is still on the grid at time n is $\left(1-p_{s}\right)^{n}$.
2. This question is on disease modeling. Let S be the subset of a population susceptible to a disease, I is the subset that is ill and infectious, and R is the subset that is recovered. Assume that anyone who is ill will eventually recover, and that the immunity of a recovered person eventually wears off, at which point they again become susceptible.
(a) Write a set of 3 reaction equations and a set of 3 kinetic equations (ODEs) for S, I, and R. Let k_{i} be the reaction rate of equation i.
(b) Find a single conservation law, and use it to reduce the system to two equations for S, I and the conserved quantity.
(c) Find two steady states, and interpret them physically (i.e., in terms of the disease progression). Determine the stability of the steady states.
3. This is a traffic modeling problem in which cars are allowed to enter and exit the highway.
(a) Assume that over an interval $x_{0}-\Delta x<x_{0}+\Delta x$ the number of cars that enter or exit from $t=t_{0}-\Delta t$ to $t=t_{0}+\Delta t$ is $4 \Delta x \Delta t Q$, where $Q(x, t)$ is the net rate per unit length at which cars are entering or leaving the highway. Show clearly that the balance law for traffic flow is

$$
\frac{\partial \rho}{\partial t}=-\frac{\partial J}{\partial x}+Q
$$

where $\rho(x, t)$ is the density and $J(x, t)$ is the flux (cars passing x per unit time).
(b) Assume the constitutive law $Q=\alpha(\rho-\beta)$, where α and β are constants. Is there any (physical) reason to assume α is either positive or negative?
(c) Assume a constant velocity $v=v_{0}$ and solve the equation with the constitutive law in (b) and initial data $\rho(x, 0)=e^{-x^{2}}$ by integrating along characteristics (or other means). Note the density is no longer constant along characteristics. What is the effect of Q on the density?

