

THE COLLEGE OF SCIENCE AND LIBERAL ARTS

THE DEPARTMENT OF MATHEMATICAL SCIENCES

MATH 675: Partial Differential Equations Spring 2021 Graduate Course Syllabus

NJIT Academic Integrity Code: All Students should be aware that the Department of Mathematical Sciences takes the University Code on Academic Integrity at NJIT very seriously and enforces it strictly. This means that there must not be any forms of plagiarism, i.e., copying of homework, class projects, or lab assignments, or any form of cheating in quizzes and exams. Under the University Code on Academic Integrity, students are obligated to report any such activities to the Instructor.

COURSE INFORMATION

Course Description: This course is intended to provide a modern introduction to the theory of partial differential equations, based on the notion of weak solutions and to develop existence and regularity theory for several prototypical examples. Specifically, first order PDEs, as well as second order elliptic, parabolic and hyperbolic PDEs will be discussed within appropriate functional settings.

Number of Credits: 3

Prerequisites: Math 690 or departmental approval.

Course-Section and Instructors

Course-Section	Instructor
	Professor C. Turc

Office Hours for All Math Instructors: Spring 2021 Office Hours and Emails

Required Textbooks:

Title	Partial Differential Equations
Author	L. C. Evans
Edition	2nd Ed.
Publisher	AMS
ISBN #	0-821849743

University-wide Withdrawal Date: The last day to withdraw with a W is Monday, April 5, 2021. It will be strictly enforced.

POLICIES

DMS Course Policies: All DMS students must familiarize themselves with, and adhere to, the Department of Mathematical Sciences Course Policies, in addition to official university-wide policies. DMS takes these policies very seriously and enforces them strictly.

Grading Policy: The final grade in this course will be determined as follows:

Homework	30%
Midterm Exam	30%
Final Exam	40%

Attendance Policy: Attendance at all classes will be recorded and is **mandatory**. Please make sure you read and fully understand the Math Department's Attendance Policy. This policy will be strictly enforced.

Homework Policy: Homework problems will be assigned and collected bi- weekly.

Exams: There will be one midterm exam held in class during the semester and one comprehensive final exam. Exams are held on the following days:

Midterm Exam	ТВА
Final Exam Period	May 7 - 13, 2021

The final exam will test your knowledge of all the course material taught in the entire course. Make sure you read and fully understand the Math Department's Examination Policy. This policy will be strictly enforced.

Makeup Exam Policy: To properly report your absence from a midterm or final exam, please review and follow the required steps under the DMS Examination Policy found here:

http://math.njit.edu/students/policies_exam.php

Cellular Phones: All cellular phones and other electronic devices must be switched off during all class times.

ADDITIONAL RESOURCES

Accommodation of Disabilities: The Office of Accessibility Resources and Services (OARS) offers long term and temporary accommodations for undergraduate, graduate and visiting students at NJIT.

If you are in need of accommodations due to a disability please contact Chantonette Lyles, Associate Director of Office of Accessibility Resources and Services at 973-596-5417 or via email at lyles@njit.edu. The office is located in Kupfrian Hall, Room 201. A Letter of Accommodation Eligibility from the Office of Accessibility Resources and Services authorizing your accommodations will be required.

For further information regarding self identification, the submission of medical documentation and additional support services provided please visit the Office of Accessibility Resources and Services (OARS) website at:

https://www.njit.edu/studentsuccess/accessibility/

Important Dates (See: Spring 2021 Academic Calendar, Registrar)

Date	Day	Event
January 19, 2021	Т	First Day of Classes
January 23, 2021	S	Saturday Classes Begin
January 25, 2021	Μ	Last Day to Add/Drop Classes

March 14 - March 21, 2021	Su - Su	Spring Recess - No Classes
April, 2, 2021	F	Good Friday - No Classes
April 5, 2021	Μ	Last Day to Witdraw
May 4, 2021	Т	Friday Classes Meet
May 4, 2021	Т	Last Day of Classes
May 5 & May 6, 2021	W&R	Reading Days
May 7 - May 13, 2021	F - R	Final Exam Period

Course Outline

Title	Topics	
1	Representation formulas for solutions: Laplace's equation, heat equation, wave equation	
2	Sobolev spaces: weak derivatives, de nition of Sobolev spaces, traces, Sobolev embeddings, Poincar e's inequality	
3	Second-order elliptic equations: weak solutions, Lax-Milgram the- orem, energy estimates, Fredholm alternative, regularity of solu- tions, maximum principles, eigenvalues and eigenfunctions	
4	Second-order parabolic equations: existence of weak solutions, regularity, maximum principles	
5	Second-order hyperbolic equations: existence of weak solutions, regularity, propagation of singularities	
6	Calculus of variations: Euler-Lagrange equations	

Updated by Professor C. Turc - 1/10/2021 Department of Mathematical Sciences Course Syllabus, Spring 2021